
UNCLASSI FIED inn 1  r ,
SECURITY CLASSIFICATION OF THIS PAGE (Whin Date n .r.d).

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2, GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 88- #o
TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED'

YtJ5 C Hf )OLUS GI TAL ?14019 THESIS

)IG GU LATO RS 6. PERFORMN•NGOiG. REPORT NUMBER

CD AUTHOR($) S. CONTRACT OR GRANT NUMBER(&)

S(ZPERFORMING ORGANIZATION NA7E AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
PERFORMING STU NT AT:N NAME .ANDADDRES S jy AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: .5TAAJFtrz~o 'L)ivr~si t~

SCONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1988
13. NUMBER OF PAGES

14, MONITORING AGENCY NAtAL & ADORESS(if d)laftent from Con•Irollnj Office) I5. SECURITY CLASS. (of thile rport)

AFIT/NR
Wright-Patterson.AFB OH 45433-6583 UNCLASSFIED

O-tWiICATIO'41/5W5OR-A-IN
SCHEOULE

18, 015T'litjlIoN STATEMEN T (of ibis Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE

ELECTE
__C0 AUGO03 8M

17. UISY I90TION STATEMENT (of the sbeate't tntarcd In BOloc& 20, It dilitro"l 430 R.twi

SAME AS REPORT

. SUPPLIJENTAI4Y MoTS Approved for Publigceleasee 'AW AFR 190-1

LYNN E. WOLAVER _ I
Dean for Research Ajd Professional Development
Air Force of Technoloq

Ii, KEY WORnSirco.thtfue ot tovs*sE od. Id Oneceeov Wmiddilty by block numbee

203. .ISTntArrt Confn!.'e on tet.oot e~~si*(!oeeiscw& nd bleaity by block owAP600v)S~~ATTACHED "

D D 147 0 EDITION Or I NOV45 iS OS n

SECURIYY CL ASSIrICATION OF THIS PAGI! (tb*it 06(M WfIio[td)



Asynchronous Digital Regulators

Vernon Scott Ritchey, Ph.D.

"Stanford University, 1987

This report presents methods for designing and analyzing multirate asynchronous

digital controls for linear systems. Multirate digital control is a natural approach
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provides a simple approach for assigning control tasks to distributed processors.
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varying. Alternatively, high sample rates simulate a continuous controller. In prac-
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Abstract

This report presents methods for designing and analyzing multirate asynchronous

digital controls for linear systems. Multirate digital control is a natural approach

for systems with widely-spaced natural frequencies. An asynchronous architecture

provides a simple approach for assigning control tasks to distributed processors.

Previous multirate design methods required either synchronized samplers or high

sample rates. Synchronized samplers produce a system that is periodically time

varying. Alternatively, high sample rates simulate a continuous controller. In prac-

tice, synchronized implementations and implementations with high sample rates

may have higher cost, complexity, and weight and lower reliability compared to

asynchronous designs. In some cases, an asynchronous implementation with slow

sampling will perform as well as a fast, synchronized design. The goal of this re-

search was to develop methods to design and evaluate asynchronous control systems

operating at minimal sample rates.

The multirate asynchronous design and analysis methods developed in this re-

port use a time-domain approach bawd on the closed-loop state transition matrix.
Design and analysis algoritlms (implemented in PC-MATLAB) arc included in an

Appendix. The aualysis is based on a sufficient stability criterion which gives an
objective measure of long-term stability and indicates short-term stability. The de-

sign method allows the designer to specify the form of the controller. Numerical

optiumization is used to minimize a quadratic cost integraL Design and analysis

examples are presented for a double integrator plant and a two-link robot arm.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this research was to develop methods to design and analyze asyn-

chronous digital control systems. Digital control systems can provide high reliabil-
ity with low cost and weight using modem digital integrated circuits. Distributed

system architecture can also reduce cost or improve fault tolerance. Also, unsyn-

chronized distributed systems may be easier to build. Consequently, asynchronous

digital design is a natural approach for implementing many distributed control sys-

tems.

Synchronized multirate systems are a special case of the asynchronous digital

system. Synchronous multirate systems ame periodically time varying because the

sample process repeats exactly after some period. Existing multirate design ap-

proaches use this periodic behavior as the basis for design and analysis.

* With true asynchronous systems, the ratio of sample periods is irrational and

the sampling pattern never repeats exactly. However, asynchionous sample patterns
can be approximated by synchronous patterns just as irrational numbers can be ap-

pro-;.imated by rational fractions to any desired accuracy. A similar approximation
is the basis of the asynchronous design method developed here.



2 Chapter 1. Introduction

1.2 Related Literature

The asynchronous discrete-time control problem is the general case of -the syn-

chronous multirate digital control problem. Walton [Wal81] and Glasson [Gla83]

developed comprehensive surveys of existing multirate methods. Multirate digi-

tal design has been a topic of continuing interest since the early 1950's. Existing

multirate methods generally fall into two classes: frequency domain methods and

time domain methods. All previous methods were limited to synchronous systems.

Specifically, all sample period ratios had to be rational numbers such that the sys-

tem was periodically time varying.

The original synchronous frequency domain techniques were Frequency Decom-

* position of Sklansky [SR55] and Switch Decomposition of Kranc [Kra57]. Subse-

quent efforts by Coffey and Williams [CW66], Jury [Jur68] [Jur67], Boykin and

Frazier [BF75], and Whitbeck [WH78] extended and expanded the Switch and Fre-

quency decomposition techniques.

Kalman and Bertram [KB59] described a general state space analysis technique

for hybrid linear systems. This technique was the basis for several optimal control

design approaches. Glasson and Broussard [GB79] [BH84] [BG80] , Amit and Powell

[Ami8O] tAP81], and Lennartson [Len86] solved the optimal synchronous multirate

state-feedback regulator problem. Berg and Powell [Ber8O] solved the more general

constrained problem for a controller of specified form (such as partial state feedback

with constant gains).

All of these methods required synchronous sampling (rational sample period

ratios).

1.3 Overview

This report addresses two related, multirate digital control topics. First, a suf-

ficient stability criterion is developed for asynchronous multirate linear systems.

Second, a new synchronous multirate design method is developed and extended to

* asynchronous systems.



1.3. Overview 3

The analysis approach described here was based on existing synchronous meth-

ods with an additional allowance to account for the difference between the actual

sample pattern and a synchronous approximation. The resulting stability criterion

is a sufficient condition that can guarantee asynchronous stability (but does not

prove instability). The criterion also gives a figure of merit analogous to a right-

most s-plane bound for the poles of a linear, time-invariant system. This author

doubts the existence of a necessary and sufficient condition for true asynchronous

stability. In practice, this is not a problem because the synchronous approximation

can be arbitrarily precise.

The design approach is an extension of the Constrained Optimization Synthesis

design method [Ber86]. The cost and gradient formulations are new. A gradient

* search finds controller coefficients which minimize a scalar cost function. The de-

signer specifies the controller structure, cost weighting, and the process noise. Then

the algorithm finds optimal gains that minimize the weighted mean square state er-

rors. If the specified process noise exceeds the synchronous approximation error the

resulting design should be stable and well behaved.

This method and the Constrained Optimization Synthesis method produce iden-

tical results given the same synchronous problem. This new method has three

advantages. First, this method avoids numerical overflow and manual fine-tuning

during the gradient search. Second, generalized forms for the co6t and process noise

accommodate discrete measurement noise and saturation penalties. Finally, this

method computes the gradients and Hessian only for actual feedback gains (instead

of all possible feedback paths). This last factor gives a significant reduction in

computation time and data storage.

The basic design method finds optimal feedback gains for synchronous sam-

* pling at a specified phasing (for instance, two samplers with simultaneous initial

samples). This basic method is extended rigorously to synchronous sampling with

random phasing. Without rigorous proof, heuristic arguments are made for apply-
ing the extended method to the true asynchronous sampling case. The stability of

the resulting asynchronous design can be verified with the asynchronous stability
.,terion, and the performance can be evaluated by simulation.
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PC-MATLAB [MLBK85] computer codes were developed for the design and

analysis methods. These codes are included in Appendix E. Sample design cases

illustrate the methods and some properties of asynchronous systems.

1.4 Scope of Methods

The design and analysis methods are suitable for multi-input/multi-output systems.

The formulation does not distinguish between plant and controller or between states,

inputs, or controls. The methods apply to linear systems composed of:

9 a linear, time-invariant continuous-time part described by i, = Ax, + Bu

where A and B are constant matrices, x, is the continuous state vector, and

U = XS.

* sample-and-hold elements with outputs x, described by a finite number of

state transition matrices of the form x.(t+) = SiX(t-) where each Si is con-

stant and X =[XT , and

* a discrete-time part described by a finite number of different state transition

matrices of the form xd(t+) = DiX(t-) where each DA is constant.

The usual continuous measurement and feed-forward matrices (C and D), typical of

the general linear, time-invariant system, are embedded in the Si and Di matrices.

Any number of arbitrary, periodic sample schedules may simultaneously control the

discrete time events (S and D,). The main restriction in both the analysis and

t* design methods is that the closed loop state transition matrix (STM) must have

"a full set of eigenvectors (non-defective). However, the design method extends to

defective STM with repeated eigeavalues at zero.

1.5 Contributions

The primary contributions of this research are:

* The sufficient stability criterion for asynchronous digital systems.

9
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* An improved constrained optimization synthesis method for synchronous mul-

tirate designs.

e Extension of the synchronous multirate method to the synchronous case with

random phasing and to the asynchronous case.

S

0
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Chapter 2

Problem Description

* This section defines synchronous and asynchronous sampling and discusses reasons

for employing asynchronous designs. The merits of fast and slow sample rates

are discussed. Finally, several current design approaches and their limitations are

reviewed.

2.1 Motivation

Multirate digital control design is motivated, primarily, by plants with a wide range
of natural frequencies. For example, if the plant has a 100 Hz mode and a 1 Hz mode,

the fast modes may require 300 to 1,000 control updates per second while 3 to 10

updates per second are adequate for the 1 Hz mode. Using the same high rate for

both modes wases computer capacity and measurement/control signal bandwidth.

Hence, multirate control is a natural approach for many real applications.

The usual motivation for asynchronous control is a distributed control system
architecture with multiple controllers. This situation may occur when several cheap

computers are used instead of one expensive computer or when the controllers are

not physically colocated. In either case, synchronizing all the sample processes to

the same master clock may increase cost and complexity. When asynchronous de-

signs give adequate performance, the additional cost and complexity is unnecessary.

System integrity requirements may also motivate asynchronous design. In a

7



8 Chapter 2. Problem Description

fault-tolerant design, the plant may have several independent controllers, each ca-

pable of controlling the plant with the others failed. In this case, requiring synchro-

nized controllers may introduce a single-point failure mode.

2.2 Asynchronous Definitions

The problem is to devise methods to design and analyze systems with asynchronous

digital controllers. Key asynchronous concepts and definitions are now reviewed to

help clarify and focus the problem.

2.2.1 Simultaneous Sample Processes

Asynchronous systems have two or more independent digital controllers operating

simultaneously as shown in Figure 2.1. The relative timing between the sample

processes will be called phase (precise definition later). The overall sequence of

events, or sample schedule, is found by superimposing events from the independent

processes as shown in Figure 2.2.

i ,,. "~Contv~iie2''-

Figure 2.1: Simultaneous Independent Controllers0
0lYl T
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S12 3 12 3 12 3

time
1st Sampler

AB AB AB AB AB AB AB AB
it t tt it t$ it tt H t f time

2nd Sampler

12 3 12 3 12 3
I AB AB A B Al n A
i' ' t t iI tim
Lt TI t t t 'l V t t t time

Composite Sample Schedule

0• Figure 2.2: Superposition of Simultaneous Independent Sample Processes

2.2.2 Synchronous and Asynchronous Sampling

The intuitive idea of asynchronous sampling (independent samplers with no master

clock) is essentially correct. In practice, independent clocks do not stay synchronized

exactly. Therefore, even identical samplers will drift in "phasing" when controlled

by independent clocks. A rigorous definition for asynchronous and asynchronous

sampling follows.

* Consider a system with n periodic sampling processes with periods TI, T2, ... T,.

If there exists a set of positive integers fki, kL2, ... , Lk.) such that T k, = T2k2 =

Tk,,, then the system is synchronous. Alternatively, the ratio of every two

*0 sample periods is a rational number for synchronous systems. Synchronous systems

are periodic with finite period (period = Tjkj).

Conversely, asynchronous systems have at least one pair of sample periods whose

ratio is irrational. With asynchronous sampling, the sample schedule is not periodic.
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2.2.3 Basic Time Period

Observe that if the set {kj, k2, ... k,,} satisfies the above condition for synchronous

sampling, then {jkh, jk 2, ... jk,} , with j a positive integer, also satisfies the condi-

tion. A unique basic time period (BTP) for synchronous systems is defined as Tiki

where {k1 , k2, ... k. } have no common factors.

A non-unique basic time period (BTP) can be defined for asynchronous systems

as follows. Suppose the designer selects a set of positive integers {kh, k2, . .. k.
such that: T7kj • T2 k2  ... z Tk,. Then Tiki is a BTP and the i'th sample

sequence is designated the key sequence (since the BTP is keyed to that sequence).

Note that there are an infinite number of choices for the k's. The Trki products can
be made arbitrarily close by choosing Lirge k's (long BTP's). This is analogous to
using fractions to approximate irrational numbers.

2.2.4 Phase

For a given BTP, the phase of a sequence is the elapsed time from the start of the

BTP to the initial discrete event of the sequence. By convention, every sequence
starts with a discrete event. The key sequence phase is defimed to be zero so all

plhtSes are unique.

Let TZ be the period of the key sequence and T. be the period of some other

sequence: "z". If Ti 9 *Tk•,, phase for sequence "z" will be different in succeasive

BTP's. If sequence 'i" and sequence "x" are asynchronous, then Z, is irrational

and sequence Yx' has a different phase in every BTP. FinSdly, if - is irrational, the

plhase of sequence 1z" is assumed to be uniformly distributed on [0 T_) when all

future BTP's are considered.

Figure 2.3 illustrates these ideas for the two-sequence case where T7 = #, T2 = 1,
k, = 1, and k2 - 3. The phase of the asynchronous sequence is r. Note that each

BTP has a unique r and each r uniquely defines the subsequent r.

Q2
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T, .. T,
IT - time

Sample Sequence No. 1 (T1 = 7r)
2 2 2 2 2 2 2

~ time

Sample Sequence No. 2 (T2 = 1)

xo x1  x2
_0 BTP= rX BTP= rX

r = 0.20 T = 0.06
1 22 2 21

lh~l iv Itime
Composite Sample Sequence

Figure 2.3: Asynchronous BTP and Phase

2.2.5 BTP Segments and Events

Each BTP consists of periods of continuous state propagation selArated by discrete

-t6tc updates (e.g. sample-aud-hold updates). Each period of continuous atste

propagation with constant discrete states is callod a segment. Each discrete state

"S (x. or x'i) update is called an event.

2.3 Sample Rate Considerations

Many current designs use high sample rates. Such smuple rates are much higher

than the inimum rates needed to satisfy performance specification*i. In some cases

(such as matual control systems-) other considerations mandate high rates. In other

cases, good performance can be achieved with lower sample rates.

One reason for using high sample rates is that a fast digital controller closely

approximates a wuitinuous controller, The error between a true waalog controller

and the digital approximation is, effectively, process noise. Consequently, any robust
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analog design can be simulated by a digital controller with high sample rates. Also,

the asynchronous sampling issue can be safely igaored because all control loops

are essentially continuous (with process noise) and asynchrony is a discrete-time

phenomenon.

High sample rates have drawbacks. The most obvious is the cost and complexity

of fast control computers, fast analog/digital converters, and wide-band data paths.

Roundoff error accumulation can be a subtle problem, particularly if complex pro-

cessing is used. Finally, considerable filtering may be needed to estimate rate infor-

mation because the parameter change between measurements is small compared to

roundoff error (high noise to signal ratio).

High sample rates may require higher analog/digital conversion precision to

* control roundoff accumulation and to reduce process noise correlation time. This

combination of high data rates and long data words compounds the hardware per-

formance requirements.

2.4 Limitations of Existing Design Methods

"Highlights of several representative multirate design methods will be reviewed with

.* emphasis on the limitations, design difficulty, and implementation difficulty.

* 2.4.1 Ad Hoc Approaches

SFirst, here are several common ad hoc approaches. These "methods" often work

(i.e. produce acceptable performance) when the sample rate is high, but they lack

a rigorous theoretical foundation. These methods tend to break down when slow

* sampling is used and when the different samp,, rates are nearly equal. These are

not true design methods. They are actually metbods of approximating the multirate

problem as a series of single-rate approximations which can solved by existing single

rate methods. The design difficulty and controller complexity are determined by

the underlying single-rate method,

---- --
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Discretized Analog Design

This approach starts with a design for a satisfactory analog controller. Then, a

"digital equivalent" design is obtainel from the analog controller design (typically

by one of the methods in [FPS0]). This approach can always be used and cross-

* coupling may be exploited to advantage (if the analog design method has this prop-

erty). However, the resulting controller may be unsatisfactory. In fact, it is easy to

construAt simple examples where adequate analog controllers have unstable digital

equivalents.

One Loop at a Time

This approach requires the designer to associate groups of outputs with groups of

inputs according to the plant modes they affect. To illustrate, the fastest modes

are identified along with inputs that can control those modes and outputs where

those modev are observable. Then, a single rate controller is designed for this

input/output/mode group using some standard single rate method. The controller

for the fast inner loop now becomes part of the plant and the process continues
_.. until all loops are closed and all modes are controled.

If all sample rates are integer multiples of the next slower sample rate and all

samplers are synchronized, this is the exact one loop at a time method discussed in

the next section. Otherwise, analog approximations of each succeeding controller

must be used to define each "new" analog plant containing embedded digital inner-

-- loop controllers.

This method is very general and can always be used. However, the best group-

ing of inputs and outputs may be unclear. Furthermore, coupling between mode

controls is one-way in the sense that slow modes are designed considering the fast

modes (which are now part of the plant) but not vice- versa. Consequently, the

fast modes may not compensate for shortcomings in the slow modes. Finally, the

assumption that the fast inner loolp are "almost continuous" is valid only if each

inner loop sample rate is much faster tlan the next outer loop. In short, the result-

* iing design may work well or it may be unstable; simulations are needed to validate

"I•
0t

S .. . = . .
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the results.

Singular Perturbation Method

The singular perturbation concept for ignoring minor effects has been rigorously

studied [Kok841, The method discussed here employs the general singular pertur-

bation idea without rigorous analysis.

This is similar to the "one loop at a time method" but in the reverse order. The

fast modes should be much faster then the slow modes. If the fast modes are well

controlled (closed loop) then the fast modes can be assumed in constant equilibrium

with the slow modes when the slow modes are analyzed. Conversely, the slow modes

are assumed constant when the fast modes are being analyzed. Stated another way,
the fast mode transient dies so quickly that the slow modes do not respond to it;

hence, the mode groups are effectively decoupled.

"This method designs the slow controller first based on the assumption that the
fast modes are in constant equilibrium. Then a fast controller is designed based on

the partially closed-loop system including the slow controller. For the sampled data
case, the fast controller is designed assuming the slow modes (or the slow controls

at least) are constant. This is clearly an approximation in the discrete-time case.

The advantages and disadvantages of this method are essentially the same as
for the one loop at a time method except that the cross coupling is reversed. This

reversal is usually good since fast modes are better able to compensate errors in
slow modes than the other way around. The approach is limited to cases where the

plant modes are well separated in frequency.

2.4.2 Exact Methods

These methods are rigorous for true lumped, linear time-invariant plants. Hence,

controllers designed with these methods should perform as predicted (except for

plant model error). However, all these methods are limited to the synchronous

"sampling case..0
N ~ -
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One Loop at a Time

This method, discussed earlier, becomes exact when each sample rate is an integer

multiple of the next slower rate and the samplers are synchronized. In this special

case, the continuous plant can be transformed into a true discrete equivalent model

and the design can be done entirely in the Z-domain. All the earlier comments con-

cerning this method apply except the model becomes exact (analog approximation

is eliminated) and the sample rates must be synchronized integer multiples. The

design difficulty and controller complexity are determined by the method used to

design each loop.

Frequency Domain Methods

* The original multirate methods were the Switch Decomposition technique of Kranc

[Kra57] and Frequency Decomposition technique of Sklansky [SR55]. Jury [Jur68]

later showed these techniques to be equivalent.

Switch Decomposition For synchronous sampling, the sample process repeats

each BTP. The switch decomposition formulation uses samplers which all operate

simultaneously at the BTP rate with advances (exp(sTj)) and delays (exp(-sT,)) to

shift the sample time and the control output times to the appropriate points within

the BTP.

This is an exact analysis technique for synchronous multirate systems. It is

primarily an analysis method. Therefore, it gives little guidance for choosing the

controller structure or gains in the multi-input/multi-output case.

Frequency Decomposition The frequency decomposition method can be ap-

plied when all sample periods are integer multiples of some short time period. Dis-

crete equivalents (T(z.)) of the continuous transfer functions are developed for

sampling at the short time period. Then T(z,) represents the discrete transfer

function for a slower sampler with period "k" times the short time period.

This too is an exact analysis technique for synchronous multirate systems. Like

* switch decomposition, it gives little guidance for choosing the controller structure
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or gains in the multi-input/multi-output case.

Time Domain Methods

Optimal Synthesis Several investigators including Amit [Ami80], Glasson [GB79],

and Lennartson [Len86] have devised different ways to solve this problem. This is

an optimal regulator problem where state feedback gains are found to minimize a

scalar cost function. The cost function is a standard Linear Quadratic Regulator

(LQR) cost integral. The solution is found from solving the resulting time-varying

periodic Riccati Equation. The resulting gains are periodic but different for each

segment of the BTP.

Controllers designed by this approach should exhibit the harmonious control

* blending and robustness characteristics of other optimal regulators. Furthermore,

the design process is automatic once the weights and process noise are specified.

Recent work (Len86] claims efficient methods to solve the time-varying Riccati Equa-

tion.

The approach is limited to synchronous systems. Also, measurements of all

states must be available. Finally, the resulting controller is relatively complex since

it must schedule different gains for each segment in the Basic Time Period.

Constrained Optimal Synthesis Berg (Ber86] developed this approach to gen-

eralize the optimal synthesis design method. The same cost function is used; how-

ever, the designer specifies the form of the controller. The optimal gains for the

* specified controller structure are found by numerical optimization.

This method has many of the advantages of the Optimal Synthesis method
with the added advantage of handling a variety of control structures. Hence, simple

controllers with fixed gains and partial state feedback and controllers with dynamics

* can also be considered.

The method is limited to synchronous sampling. The added flexibility requires

the designer to guess the best controller structure. Finally, the gradient search

for optimal control coefficients (particularly in the original implementation) can be

Scomputationally intensive and requires frequent designer intervention to fine-tune
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the convergence process.

2.4.3 Common Limitations

All of the exact methods require synchronous sampling. None of the methods have

objective criteria for optimal sample rate selection. Only the Optimal Synthesis

methods addressed finite word-length (quantization and roundoff error) and plant

uncertainties (design robustness) by including process noise. None of the methods

directly addressed system integrity with respect to failures.

0



Chapter 3

Definitions, Conventions, and

Notation

This section addresses a variety of background items, definitions, and notation that

provide a foundation for subsequent chapters. The system description nomenclature

parallels the corresponding variables in the PC-MATLAB code (Appendix E).

3.1 Synchronous Sampling

Consider a system with n periodic sampling processes with periods T1, T2, ... T,.

If there exist a set of positive integers (kh, k2 , k,} such that

TkLI = T2k2=..= Tnk,, (3.1)

then the system is synchronous and periodic with period T7ki.

3.2 Basic Time Period

0 3.2.1 Synchronous Basic Time Period

A unique basic time period (I3TP) for synchronous systems is defined as Tiki where

{TI, T2, ... T,} and (k, kL2, ... )k,) satisfy Equation 3.1 and {k,, k2, ... k,} have no

common factors.

19
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For synchronous sampling, the BTP is unique. A synchronous BTP is the short-

est period such that the discrete event sequence is the same for all BTP's. The state

transition matrix is the same for all synchronous BTP's.

3.2.2 Asynchronous Basic Time Period

A non-unique basic time period (BTP) for asynchronous systems is defined as Tiki
where the designer selected a set of positive integers {k1 , k2, ... k,,} such that:

Also, the i'th sample sequence is defined as the key sequence (since the BTP is

e- keyed to that sequence).

For asynchronous sampling, the designer specifies the BTP. The asynchronous

BTP is not unique. The sequence and timing of the discrete events is never ezaxily

the same for any two BTP's; however, the discrete event sequence and timing is

nearly the same for each pair of sequential BTP's. The key sequence is always

synchronized with the BTP.

3.2.3 Sequence Phasing

The phase (r) of a sequence is defined as the elapsed time from the start of a BTP

to the initial discrete event of the sequence. Defining key sequence phase to be zero

makes the other phases unique. Figure 3.1 illustrates this concept.

Let TZ be the period of the key sample sequence and T, be the period of some

other sequence. Observe that phase for sequence "x" will be different in subsequent

BTP's unless Tjk, = TAkR. Furthermore, if the ratio T, to Ti is irrational, then

sequence "x" will have a different phase in every BTP. Finally, this phase is assumed
Sto be uniformly distributed on [0 T,) when sampling is asynchronous.

For a given BTP, the sequence and timing of the discrete events is uniquely

described by a vector of phase times (one component for each sample sequence).

By convention, the phase time for the key sequence is always zero. Hence, if there

are n. sample sequences, there are n. phase times but one of these is zero.
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S1 1 1

tim

Key Sequence

BTP

LT2>
2 2 2 2 2 2 2

I I Itime

Other Sequence

Figure 3.1: Phase Concept

3.3 Kalman-Bertram Representation

In [KB59], Kalman and Bertram present a systematic way to construct the state

transition matrix (STM) for an arbitrary hybrid analog/digital system over an ar-

bitrary time period. Part of their approach, which is used in this paper, will be

sumnmarized here.

3.3.1 The State Vector

The state vector has three parts: continuous states, sample states, and discrete

states. If the system were represented as a block diagram composed of integrators,

sample-and-hold elements, and discrete delay elements, the integrator outputs are

continuous states, the sample-and-hold outputs are sample states, and the delay el-

ement outputs are discrete states. Figure 3.2 represents the general hybrid system

where all paths represent vector quantities. Integrator inputs can orly be con-

nected (through gains) to integrator outputs and sample-and-hold outputs because

delay-element outputs are undefined between discrete events. The equations for the

samplers include the usual continuous output and f&4forward matrices ("C" and

*_ "D"). Also, the sampler equations must avoid any algebraic loops or the problem
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will be ill posed. These three types of states represent all the memory in the system.

Hence, the system state is:

X - X.

IXdj
where: x, is a column vector of continuous states, x, is a column vector of sample

states, and Xd is a column vector of discrete states.

S&H CMUE
Xe qXdJ

* Figure 3.2: Block Diagram of Hybrid System

3.3.2 State Transition Matrices

There are two types of state transitions: continuous transitions and discrete tran-

* sitions. Continuous transitions occur during segments and discrete events occur

* between segments.
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Continuous State Transitions

The continuous state transition can be computed for any time interval (At) contain-

ing no sample or discrete transitions. Assume the continuous state space description:

;i = Ax, + Bu is known and note that u(t) = x, which is constant during At. Use

the usual zero-order-hold continuous-to-discrete conversion (see [FP80] or [Kai80])

to obtain:

x0(to + At) = O(At)x"(to) + r(At)u(to)

where 4(At) = exp(AAt) and r(At) = foAt exp(As)B ds. Or:

Xo(to + At) =(At)x"(to) + r(At)x,(to).

Combining this with x.(to+ At) = I.x,(to) and Xd(to+At) = IdXd(to), where I, and

Id are identity matrices of the correct size, yields the full state transition matrix:

o(At) r(At) 0 xm(to)

X(to + At)= 0 Ir 0 x.(to) 5= (At)X(to). (3.2)

S0 0 Id Xd(to)

Given a fast and reliable matrix exponentiation routine [MVL78], a simple way

to find O(At) and r(At) is given by [VL78]:

o, (At) r(At) =exp ABAt .(3.3)

Another form, useful in derivations is:

A B 0

0(At)=exp 0 0 0 At (3.4)

0 0 0

Sample State and Discrete State Transitions

Transition matrices for sample states can be found by inspection. For example,

suppose the sample event consists of sample and hold state "k" sampling state "w"

* Q through a gain K. and state Vn" through a gain K. (i.e. x&(t+) = K,•,•(t-) +

0
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K, xr,(t-)). The corresponding state transition matrix is just an identity matrix

with the k'th row replaced by the row vector:

[10 .. 0 Km 0 ... 0 K,1 0 ... 0]

where Km is in the m'th column and K& is in the n'th column.

Similarly, the discrete state transition matrices are obtained from the difference

equations by inserting the difference equation coefficients into the corresponding

rows of the transition matrix. The remaining rows of the matrix are the same as

an identity matrix.

The transition matrices for sample and discrete state transitions are essentially

similar and a single discrete-time transition often updates both sample states and

discrete states. The main reason for differentiating between sample and discrete

states is that sample states control the continuous states. Therefore, the sample

states should be grouped together in the state vector so the columns of r stay

together.

3.3.3 BTP State Transition Matrix

Given the discrete transition matrices (DI, D2, ... , D,,), A, and B, a state transition

matrix for a BTP can be constructed for any specified sequence of events. To

illustrate, suppose the BTP begins with a discrete event of type 1, followed by

elapsed time tt, followed by a discrete event of type 2, and finally an elapsed time

t2, completing the BTP (see Figure 3.3). The corresponding state transition matrix

for this sequence is simply:

3.4 Asynchronous System Description

We need a precise and compact notation to describe a hybrid (analog and discrete)

system with arbitrary periodic sampling. The notation shown here parallels the PC-

MATLAB code in Appendix E. The continuous-time (analog) part of the system is
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BTP
D1 D2 D1

L ti tA 2
_] !- !- -Itime

Figure 3.3: Event Timeline Illustration

completely specified by the A and B matrices of the matrix differential equation:

ic = Ax 0+Bx.. The columns of B are arranged so they are in one-to-one correspon-

dence with the sample-and hold states. For example, a duplicate column is added

for a particular input if two separate sample states drive the input. Conversely,

* O-columns for two different inputs might be summed into a single column if one hold

state drives two inputs. For computational simplicity, A and B can be stored as a

single square array (zero-filled at the bottom):

AB - °
A = 0  0j

Thus the full analog transition matrix can be evaluated as:

[exp(ABAt) 0]

Each sample schedule is finite and periodic so there are only a finite number

of different discrete time transitions. In practice, discrete transitions often update

both sanmple and discrete states, so no distinction is made between discrete-time

transitions that update sample states and discrete-time transitions that update

discrete states. The discrete transitions are numbered arbitrarily and the full state

transition matrices can be stored as DS, a row of square block arrays:

DS D, D2 ... D.

The sample sequences are defined by a roctangular "sequence pointer" array

"* which has a row for each sample sequence and enough columns to describe the
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D1 D2 D1 D2 D1 D2

I I - time
FirsL Sequence

D3 D3 D3 D3 D3 D3

r_ 03::J1 1 1 . time
Key Sequence

Figure 3.4: Timeline Illustration

longest sequence. Negative integers indicate discrete transitions defined by the cor-
responding block of the DS array. Non-negative real numbera indicate the duration

of continuous-time transitions. When some sequences are longer than others, rows of
the short sequences are filled with zeros (indicating a continuous transition for zero
elapsed time: i.e. no transition). By convention, the first event in every sequence

is a discrete event. To illustrate, consider the sequences sketched in Figure 3.4

described by the squeuce pointer:

S-3 0.3 0 0

Tifs array indicates two simultaneous sequences. The first sequence has period 0.5
and consists of discrete event 1 followed by discrete event 2 after a delay of 0.1.
The second sequence is just discrete event 3 repeated with period 0.3. Based ou the

•preceding BTP discussiocn, this is a synchronous system with BTP=I.5.

3.5 Cost Function

A generalized Linear Quadratic Regulator (LQR) cost function is used in the design
* method. One would expect that the resulting designs share the desirable robust
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properties of the LQU.

The cost function in [Ber86] was:

X( T PT 'I-

J(N) E 1INT[ qT) 0 dt) d
) 2NPT Jo u(t) J 0 R(t) u(t) jtj,

where PT is the BTP, E{ is the expected value operator, and Q and f are designer-

specified weighting matrices. The initial state covariance was zero (E{x(0)xT(0) =

0}) and the analog process noise had covariance W(t). If Q, R, and W are either

constant or periodic with period=BTP (as in [Ber86]), then as N -+ oo this cost

becomes the steady-state mean square state error and control effort weighted by Q
and R. In the limit, this is exactly equivalent to

i PT X(t 0(t 0 ((t
2PTE ý-P)0 U(t) t) 0u(t) dt

if the process noise begins at t = -oo. In this case, E{x(o)xT(o)} is a steady state

value at BTP start, not zuro.

For the formulation in this paper, controls and states are combined in a single

state vector. The above cost function is generalized to:

T
0 ( [ ) xW( i, w12  0 X'(t)

J = E B-TP .,(t) W2 W22 w•23 x.(t) dt

L4(t) 0 W32 W33 Xd(t)

S=~Ej 1 BTBTPT]o [X(t)]T [Wo[X(t)]dt, (3.5)

2BTP' I TT03~

where W0 is a positive semi-defin!te cost weighting matrix specified by the designer.

If state errors are equally serious throughout the BTP, a constant WO is not a

significant limitation. Choosing non-zero values for w31 and w13 makes the cost

computation significantly more difficult. There is no apparent reason to specify non-

zero values for w31 and w13, so they are zero by convention and the PC-MATLAB

computer codes in Appendix E do not include contributions from w3i and W13.

Conversely, non-zero values for w33, wO2, and w23 can be used to avoid saturation



28 Chapter 3. Definitions, Conventions, and Notation

and limits. Observe that wi1 = P and w22 = Q so this formulation is exactly the

same as [Ber86] when the other wij terms are zero. Finally, w22 should be positive

definite to insure that infinite control commands are not allowed.

3.6 Process Noise

The process noise used here is also an extension of the continuous process noise

used in [Ber86]. The process noise covariance is described by:

X11 0 0
X°= 0 A• X 9

S0 X 0 Xo0

where x', = E{w(t)wT(t)} is the continuous process noise covariance. This is the

same as the pyocess noise in [Ber86] when w(t) is stationary. The other terms:

X22, x23, x32, and X3 are discrete process noises covariances which are added to the

state error covariance whenever the corresponding states are updated. To illustrate,

suppose that state i, a sample state, and state j, a discrete state, are updated

simultaneously by the same discrete state transition matrix; then, X 0 (i, i), X0(j, j),

X'(ij), and X°(j, i) are added to the coiresponding elements of the state error

covariance matrix when the transition occurs. These additional terms can be used

to specify digital measurement noise since all sampled measurements immediately

become discrete or sample states.

3.7. Cost Function Scope

Before continuing, note that this extended coat function is quite general. The

* traditional Liuear Quadratic Gaussiaa (LQG) cost function, with process noise and

"measurement noise, is fully accommodated within the fratnework of the extended

3 |•cost function. Equivalent proces noise (in the x. and xj) can be found from discrete

measurement noise. Hence, this formulation will accomplish LQG design if the

* controller structure is au observer with state feedback.

S
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In addition, the off-diagonal W0 blocks allow penalties that can be used to avoid

state and control limits. For example, suppose state j is limited and +j = xk where

Xk is a hold state (i.e. a control), then Wo(j, k) > 0 penalizes control that pushes

x1 toward the limit, particularly when xj is large. The w23 block can be used in a

similar way to avoid control limits.

S

0
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Chapter 4

Asynchronous Stability Condition

*" This chapter develops the sufficient stability condition for an asynchronous sampled

data system. Specifically, if the sum of two integrals is negative, the system is stable

on the average. Furthermore, this sum defines an upper bound on the exponential

decay constant for the average state error decay rate. An analogous figure of merit

for linear, time invariant continuous systems is a rightmost bound on the pole lo-

cations in the s-plane. Finally, plots of the two integrands show how stability is

influenced by asynchrony and phasing. Hence, the approach is also useful for syn-

chronous systems with unknown phase. Although the method is applicable to any

number of asynchronous sample schedules, a simple two-schedule (one asynchronous

schedule) version is derived and used for the examples in the next chapter. The

main limitation is that the closed-loop BTP state transition matrix (STM) must be

diagonalizable.

4.1 Stability Definition

.* Consider a linear, time-varying system with a state vector x(t) and a state transition

matrix P(t, to) such that x(tf)= %P(tj,to)z(to).

A necessaxy and sufficient condition for global asymptotic stability is:

* lim a-Q(tjto))--# O, for all to (4.1)

31



32 Chapter 4. Asynchronous Stability Condition

where 7(-) denotes the maximum singular value of a matrix. This stability definition

will be used throughout this paper. Note that this says that each element in xp(oo, to)

must be zero.

4.2 Factors of IQ

For reasons that will be apparent later, T will first be factored in a certain way.

Divide the interval [tf, to] into finite segments [t,, t,-1],... [t2, t1], [tI, to) such
that n -4 oo as tj - 0o. Then, %P(tf, t0) in Equation 4.1 can be factored as

'P(t1, to) =Pnn- * * 2~

where Tk is defined as %'(tk, tk-1). Later, these intervals will be set to the "basic

time period" (BTP).

When the individual 'k's are diagonalizable (not defective) each %Pk can be

factored (x4 = SkAkSV) where A is a diagonal matrix of eigenvalues and S is a

matrix of eigenvectors. Then %P(tj, to) can be expanded:

%P(ti, to) = S-AnS$-;SIAI-jS;_ 1 " "S2A2 Sý'SIAI$ST.

Finally, factor each
Ak = V{ "k 'A

where I is the spectral radius of Ak or Tk. Now:

S... . I... •= ... S.AkS'Sk1-Ak1- ''...
V~1k~ Ahý,S Xk -

- ... .S~/~~k X.x zSý..SAh-I S-I

Isk A~k-ITI-Ik-l-

where: , V- S; 'Sk 1 °-. (4.2)

So, gP(t1 , to) can be rewritten in factored forni as:

V(.,to) = st -12A211 Is. (4,3)
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4.3 General Sufficient Condition

Recalling that r(.) is a scalar consider an equivalent form for Equation 4.1:

-- ][lim F(T(tf, to)) -- 0. 4==• lim [X(1,4.1.-.•2- i)11 < 1
tf--00 n--oo

Furthermore

Y(" / naA)X _1'(/An_1), * * ~aA2 IX" 11

Therefore a sufficient stability condition is:

lim [Ur(SnAn) '.'(A)'n 2 (A2)Xi'((.V ] . < 1. (4.4)

Suppose we define bounds A, and o' and the A's and X's are dividcd into classes

such that a(A) •: 5o for all the A's in class "i" and A.'-) <A for all -X(P)'s in class

"Y'. Also, for any sequence length n let ni be the number of A's in 'ldass "i" and let
nj be the number of X's in class "j". Then

-- AQ

[~SnVI-I) XR(R)2F~,.). #~(IAi 1U('1 )]*

where pncas and p• inrc the, repectaielty.o curnco aetasto mti~wt
In lasind X lin as: n -espetiaedn)unt oasfiin tbiiycniinbcms

li a j I i)4 IAp% 45
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4.4 Asynchronous Multirate Stability

Now, apply Equation 4.5 to the asynchronous multirate problem. Let each [tk, tk- 1]
interval be a basic time period (BTP) and use rectangles in phase space to partition
the A's and A's into classes.

Assume that the phase for all BTP's from t = 0 to t = Co is uniformly dis-
tributed. Then, the probability of occurrence of an STM in a given class is equal
to the size of the phase space rectangle divided by the size of the total phase space.

Let r be the phase vector that uniquely defines the BTP state transition matrix.
Then, for the k'th component, 7rk E [0, Tk), where Tk is the period of the k'th
sequence (a non-synchronous sample sequence). Assume the rk's are independent.
Then, the probability of occurrence of a sequence with rk E [N1, t2] is just

assuming 0 <_ t1, t2 5 T,.
If we take the natural logarithm of Equation 4.5 we get

po, log(a,) + pA. log(A\) < 0, (4.6)
i 3

another form of the sufficient stability condition.
Suppose we divide the A's and F(%P)'s into classes based on rectangles (in T

space) of size dr. Say the i'th class is defined as all state transition matrices with71 E [rt, rit + dr), r2 E (rig, T,2 + dr),..,- -r, E [ri, ri + dr).
Now, Equation 4.6 can be expressed as sums over the coordinate indices (i...j):

dl"n .. , do(¢..n +j It"=•
-.... ,. Exo~j..j ogCAi,...j) < 0 (4.7)

where:

n number of asynchronous samplers,
STa,

A,.\.1 = sup(X('P(r))), ri E [(i - 1)dr, idr], .. .r,% E [(j - 1)drjdr], and

i u,... j sup(j(A(r))), Ti E [(i - 1)dr, idr], . .r,. E [(j - 1)dr,jdrj.

0AL
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In the limit as dr -- 0, the sums in Equation 4.6 become integrals:

or0

sss] Also, define a* = "-- . The significance of oa* will be discussed later.

4.4.1 An Important Special Case

Finally, consider the special case with only one asynchronous sampler. Then, r

becomes a scalar and Equation 4.8 becomes:

0a 1- 0 • log(T(A(r))dr + y 1 log(-(%P(r))dr <0. (4.9)

This form will be used for the sample cases later in this paper.

4.5 Eigenvector Scaling

The eigenvector matrix (S) needed in the "A" calculation is not unique. In fact,

the choice of eigenvectors changes a(r). Ideally, the length of the eigenvectors in
S would be selected to minimize a(r) and reduce the conservative nature of the

results. The best S (which minimizes a(r)) is not obvious. Numerical stability is

"another consideration. We can improve the numerical properties by choosing S in

balanced modal form such that the norms of the columns of S are the same as the

norms of the corresponding rows of S-1. In some of the example cases, the balanced

modal form improved the condition number of S (and S-1) significantly compared

to choosing eigenvectors of unit length. This balanced modal decomposition was

implemented in the computer codes in Appendix E. In most cases, the result (a*)

was less conservative than results with unit eigeavectors.

4.6 Analysis of Result

Before leaving this topic, consider the siguificance of the Equation 4.8. Comparing

this with Equations 4.4 and 4.5 one can conclude that, in some average fashion,

S
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log(F('I(to + BTP, to))) !5 Ao. Hence, if X 0 is some initial state and X1 is the state

one BTP later, then on the average, 1jXI] _• ]jXojj exp(a°). Hence, a' is like a

maximum (conservative bound) decay constant for one BTP.

The term "average" was used loosely in this discussion since it actually indicates

a multiplicative average. To be more precise, if the initial state error is X(O),

then the residual error IIX(t)JI will be less than IIX(O)II exp(a*t) for most values of

t E [0, oo). So, a* can be thought of as an average worst case (conservative) decay

constant per unit time.

Now consider the integrands of Equations 4.8 and 4.9. The BTP STM is an

analytic function of phase except at a finite number of points (see Appendix C).

Hence, the Ai's and A's are continuous functions of r except at a few known values.

Therefore, the integrals can be computed numerically without difficulty.

Plots of the integrands of Equation 4.9 versus r give substantial insight into

the system behavior. If a system were actually synchronous with random phase,

log X(I(r)) must actually be negative for all r for guaranteed stability. Thus, a

plot of log X(Q'(r)) versus r shows how sequence phasing influences the stability of

a synchronous system. Similarly, a plot of log W(A(r)) versus r shows the possible

destabilizing effect of asynchronous sampling. Together, these plots show the rel-

ative stability contributions of transitions over the BTP (if repeated indefinitely)

and the mismatch in going from one BTP to the next. If the mismatch is too

destabilizing, longer BTP's (closer to synchronous) can be used to get a "sharper"

sufficient stability criterion.

To illustrate, consider Figures 4.1 and 4.2. Figure 4.1 represents a synchronous

system. For synchronous systems at the synchronous BTP, log-(A(r)) = 0 for

all phase values. The system is stable for some values of phasing (where log(l)

is negative) but not for others. If Figure 4.1 represented an asynchronous system,

,4 the system would be stable overall (area below curve is greater than area above)

but the errors would grow during some BTP's. Such behavior may be acceptable

if these "unstable" BTP's are ,nixed with stable BTP's. Conversely, if there are

many "unstable" BTP's in a row, the behavior is probably unacceptable. Figure 4.2

represents a stable asynchronous system. The stability of the A exceeds the worst

I
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-log (Lambda)

-tog (sigma)

0o0.

0

0

0

Aaynchronouo Sequence Phase, sec.

F igure 4.1: Synchronous Stability Plot, Nominal Gains.

S~possible destabilizing effect of a (the BTP mismatch). Interestingly, a similar syn-

•m4

chronous system is only stable for some r values.

One should not equate large negative values of ar* with good performance. For
Sexample, lightly damped estimator error states can be perfectly acceptab le when

S~measurement noise is small. Increasing tihe dampiu~g for some state errors WMay only

reduce damping of tihe output errors. Therefore, a* should only be used to assess

stability, not performance.
•e The next Chapter applies these stability concepts to a simple system. For the

Sremnainder of this report, the following notational abbreviations will be used:

.00

aa(r)

This yields a more compact notation and emphasizes the functional relationship

•between A(,)a(-), and r.
M-a
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-tog (Lambda)
-tog (sigma)

M

0

i0.1

00 0. 0

o -

0 0

•a

0 .2 0.1 0.6 0.8
Asynohronous Sequence Phose, sec.

* Figure 4.2: Asynchronous Stability Plot, Nominal Gains.



Chapter 5

Stability Examples

*• This chapter applies the sufficient stability condition to a simple double integrator
plant. The results illustrate various stability considerations using this very simple

example.

5.1 The System

The system consists of a double integrator plant with digital position feedback
and a crude digital rate feedback (See Figure 5.1). The positioti and rate feedback
represeut two coupled but independent and possibly asynchronous sample processes.
With analog state feedback, the system would be stable with any positive state

feedback gains. The asywchrouous digital system is fourth order and it is not so
well behaved

The sample periods are Tl=T2=1.0 for synchronous cases and T1=1, Tr2=0.9
for asynchronous cases. The so-called asynchronous case is actually synchronous

with a Basic Time Period (BTP) of 9.0. However, all cases will U, analyzed with
* IBTP = 1.0. This fiction allows direct comparison with an exact analysis using the

true synchronous BTP.

This idea of using asynchronous analysis and a short BTP for a synchronous eye-
tem has merit. For example, suppose some system were synchronous with B3TP=100

but we are interested in the response during a much shorter time (say 1). Then, it

39
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u X1 X2

- position II-I0Iih-• 0.5
_X3 S:H T

rate
estimate

-1 2.0 X4 S&H 0.e00.5NIT2 +&L

Figure 5.1: Block Diagram for Example System
would be appropriate to analyze the system with a l TP (near 1) to evaluatWe

the short-term stability of the systemu.

5.2 Nominal Sampling

At the nominal condition, both samplers operate at one sample -Wr second. Fig-

ure 4.1 shows the stability condition (Equation 4.9) integrands versus plase for the

noninal gainis aod synchrauotu sanpling. The o(A) term is unity so log a(A)=O for

all phate values. The A term varift with phase. The system is stable at phase condi-
tions greater than 0.28 and unstable for phase conditions less than 0.28. Therefore,
"the stability depends on the phase relationships betweeU the two samplers. This
is easy to tuiderstwnd from Figurc 5.1. When the rate sampler operates just after

the powition sampler, the effective rate feedback gain is zero. As the rate s mpler
delay (phase) increases, the effective rate feedback gain increases and so does the

..... .... I f
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stability until the delay exceeds a quarter of the natural period where the effective

rate feedback gain starts to decrease.

5.3 Asynchronous Sampling

5.3.1 Analysis for BTP=I-'

Now consider the case where the rate sampler is faster with a period of 0.9. Ana-

lyzing this configuration for the same BTP (1.0) gives a* = -0.031 and the curves

in Figure 4.2.

The \ curve is identical to the synchronous case for r > 0.1. The events in

the asynchronous BTP are identical to the synchronous BTP whenever r is greater0
than 0.1; but the asynchronous BTP contains an extra rate sample when r is less

than 0.1.

Since the sampling is actually synchronous, phase (r) is not uniformly dis-

tributed. Actually, r cycles through a sequence of ten specific values (say 1.0,

0.9, 0.8, ... 0.2, 0.1). If the exact phasing is known, the actual values can be aver-

aged. If the exact phasing is random, then a* is a good stability indicator for the

synchronous case if the analysis BTP is much shorter than the true BTP.

5.3.2 Analysis for Synchronous BTP (9.0)

In fact, the so-called a.synchronous example is actually synchronous. We use this

fact to determine the true stability.

Figure 5.2 shows stability integrands for the true BTP. Comparing with the

previous plot, we see the sufficient condition was conservative. This fact is, however,

magnified by the crude synchronous approximation (I ;i 0.9). In actual practice,

much better BTP's can be selected.

.@.
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Figure 542: Stability Plot, Nominal Gains, Long BTP
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* Chapter 6

Synchronous Design Method

The overall design method is a gradient search to minimize a scalar cost function.

This chapter describes the cost fu nction, the gradient, and the search algorithm for

the synchronous sampling case wi, ý known phase. The next chapter extends the

method to synchronous sampling with random phase and to the asynchronous case

with varying phase.

6.1 Cost and Gradient

Actually, two different cost functions are needed: one for an unstable system and

one for a stable system. The true cost function must approach infinity as the sys-

tem approaches instability because an unstable system is not acceptable (infinitely

bad). However, initial guesses for the control gains may yield an unstable system.

Therefore, an always finite, alternate coat function is used until stabilizing gains are

found.

Ideally, the cost function is an analytic function of the BTP STM. At a minimum,

the cost should be a continuous function of the gains with a gradient defined almost

everywhere, Isolated gradient discontinuities are acceptable if the gradient search

* is not likely to encounter these points.

43
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6.1.1 Initial Cost Function

The initial cost function must decrease as the system becomes more stable. An

obvious choice is the spectral radius of the BTP STM since stability and a spectral

radius less than one are equivalent. Unfortunately, the spectral radius gradient is

discontinuous when multiple eigenvalues are equidistant from the origin. This is a

serious flaw because a gradient search invariably encounters such conditions while

minimizing the spectral radius of a high order system.

The initial cost function chosen is a variation of the L" norm of the eigenvalue

vector. The initial cost was defined as

L = ZA - (6.1)
it1

where k is the order of the system, Ai is an eigenvalue of the STM, and n is some

even integer. As n increases, this cost function becomes equivalent to using the

spectral radius. Typically, larger values of n are better for higher order problems.

For the ninth-order two-link robot-arm problem, n = 4 and n = 8 both worked

well. The gradient of this cost is defined whenever partials of the eigenvalues exist.

Although the gradient is discontinuous at repeated roots, such points are rare and

caused no problems for the test cases.

6.1.2 Initial Gradient

The gradient of the initial cost is found by applying the chain rule to Equation 6.1:

L1 t = 1 ( (6.2)

The eigenvalue derivative (Ad) is computed from 'P and T as described in Ap-

pendix A. Gradient components are computed separately for each variable paranm-
eter in the controller.

NOI
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6.1.3 Main Cost Function

Once a stable system is obtained, the cost function, as introduced in Chapter 3, is

taken as:

SJ = E{ 2 BTPoI [X(t)]T[Wo][X(t)]dt

BP BTP X' r tW11 W12  0 :;(t) }= E 2 1P o Xa(t) W21 W 22 W23 x'(t) dt
Xd(t) 0 W,32 W33 Xd(t)

for a system disturbed by stationary white process noise for the infinite past.

Useful Theorems The following theorems will be used to develop the cost func-
tion expressions (see Appendix D for proofs):

Theorem 1 Let x,, be the partial state vector: [(4 xT]T such that

ic. = (AB] x. + no.

where n,. is a white, continuous process noise with covariance:

* where 6(.) is a unit impulse at zero.

If xz(t) = E{x.(t)xT(t)) and there are no discrete transition. between t 0

an t = t, then

xX(t,) = .,(ti)xz(0),(ti)1 + X(t,)

Where 0(s) exp([ABDs) and

X0(t1) O 4(S)x°(s)T ds. (6.3)
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Theorem 2 Let X [XT Xj T XTT be the full state vector. Let %Pd be a discrete state

transition matrix where

X(t+) = %'dX(t-) + fld(t)

where nd(t) is white discrete process noise with covariance Rd.

If XX(t) =- E{X(t) XT(t)} and the discrete transition 'Pd occurs at time to,

then

XX(tt) = TdXX(tG) XpT + Rd. (6.4)

Note: let Rd = [Rj]. Then R.ij is zero unless %Pd updates state i or state j.

Theorem 3 Let X be the full state vector: [T X XT]T and

X = G(t)X + N(t).

Where G(t) is stable with a corresponding state transition matrix Q(tb, Q). N(t) is

white process noise and E{N(r)N T(s)} = b(r -s)Rn(a).

Let XX(t) E{X(t)XT(t)), to > t-. > t-2" ", and . = -oo.

Then if RX E{X(t1 )X T (t,)} when E{X(t_.l)X T (t_.l)} = 0 (i.e. the covari.

ance growth from ti_. to ti) then
-00

XX(to) = T '(to, t,)RP(to, t,)T.
i=O

Theorem 4 Let X be the state vector: [x7 xfl' such that

X= GX+N

where G is constant and N is white, stationary process noise with covariance

X11 0 0
X"= 0 0 0

x0 0 0

Let XX(t) - E(X(t,)XT (t})) and Wo be a symmetric matriz.
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If there are no discrete transitions between time= 0 and time= t, then

J(t,0) EjX2'(r)WoX(r)drt -T
t (xx(o) * fo 'I(r)~ Wa 'I(r) dr)

+ t (x.O * fot ' o T(S) W0 TP(s) da dr.) (6.5)

where: J(t, 0) is the cost contribution for the segment (0, t), "*" denotes element-by,-

element matrix multiplication, t denotes the algebraic sum of the matrix elements,

and T(t)=_ exp 0 0 0 t
0 0 0.

Cost Calculation The BTP consists of continuous time segments separated by

discrete events. The discrete events do not contribute directly to the cost inte-

gral because they occur in zero time and the states are always finite. Hence, the

cost is"--L E = I J(ti, ti- 1) where J(m, n) is defined in Theorem 4 and there are k

continuous segments in the BTP. Consider the second term in Theorem 4:V (X ro/ Ip()W P( ) sd
This term, which represents the cost contribution from the noise in the current

segment, does not depend on the discrete (DS) gains (the other term represents

the cost from all previous noise). For simplicity, thiis second term will be deleted

entirely from the cost calculations. The rationale is:

9 The value of the deleted term may be computed [VL78] but this is, by far,

the most difficult calculation and its value is slight, at most.

-0 If all the controls are digital (all adjustable gains in DS array), then the deleted

term is constant and it does not influence the gain optimization

* With some analog controls (adjustable gains in the AD arriay) the contribution

of this term will be small unless the fastest sample period is long compared

to the error decay time constant (unlikely).

.
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Using this simplification, the cost can be approximated as:

S1 k ft•

1 k ~ t,* P1+1 i(t)T W0 TI(t) dt~~2 2BTP.=s

2 BTP X 1

where

Q,=[ Wo 'P(t)dt. (6.6)

Notice that Qj is always defined regardless of system stability.

The XX(t,) term can be expanded using Theorem 3:

XX(t,) =T,0xx(t0)qFo ,jT
.1=1

where Rj is the additional state covariance from the end of the j - 1'th segment to

the end of the jth segment and T., is the STM f'rom the end of the n'th continuous

segment to the start of the m'th continuous segment and n = 0 indicates the start

of the BTP.

Then, the cost becomes:

1 Z2t(jPoXX(to)%p )*Q, + •2 BTQ,'... BT J. =0 2 BTP ý,o (*"• \=

Now, use the syinmetric identity: t(T X 1 Tr) * X 2 =-• (TT X 2 T) * X 1 to extract

the XX(to) from the suuumation. The first term can be rewritten as:

1 ,v~O T QTi] 1Ofxt)*W
2 BTP~[~ 2 )*YI

whereS. .. * k-I
=_W ip"ir fc T' (6.7)

Notice that WW is always defuied.

Suppose the additional covariance from noise in the current BTP is accumulated

recursively in XX as follows:
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XXo = 0,

XX+ = %IP tXX,- lk4 + Wid (reference theorem 2), and

XXi= •icX....+(iX1 ) SC,,fT + ,(t)Wo0 ,A(t) T dt (see theorem 1).

XX = XX;.

Where 'I,, is the i'th continuous STM in the BTP, qi' is the subsequent discrete

STM, and there are k continuous segments in the BTP. The subscripts on X refer to

the discrete events between continuous segments, and the (- +) superscripts indicate

values just before and just after the indicated discrete events. These XX values

will be used to simplify the cost expression. Note that the XX sequence can always

be calculated.

Combining these expressious gives:

__J= 1 [XX(to) * WW] + 2[----J(6.8)

Expressions for each of these terms have been defined except XX(to) which is

addressed now.

XX is the state covariance at the end of a BTP if the state is zero at the BTP

start. XX(to) is the steady state covariance at the start of the BTP if the system

has been excited by the process noise forever. Note that XX always exists but

XX(to) only exists if the system is stable. If the system is unstable, the steady

state covariance is infinite and the initial cost function must be used.

For synchronous periodic sampling all DTP STM's (1k) are identical. Using

Theorem 3, the steady-state state covariance at BTP start (E{X(to)X'(to)}) can

be found from XX and the DTP STM. When the BTP STM can be diagonalized,

* the infinite sum is solved in closed form,

XX(to) = t(to- t,) Xxi (t, - to) (6.9)

"i=O

0Tj - --Q l) T.
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=- s~Ai(S-1 XX S-H) (AH)}H

= S [(S-1 XX S-H ) *

= S [(S-1XX SH) *( V (i-AXII))IsH.f

Where:

S, A =matrices of the eigenvectors and eigenvalues of T where A is diagonal and

Ti = PAP-',

A is a column vector of the eigenvalues in A,

* I is a matrix of all 's,

* denotes element-by-element matrix multiplication, and

+ denotes element-by-element matrix division.

Note that the quantity XX(to) always exists for a stable system; however, the

closed form expression of Equation 6.9 only applies to stable systems where the
-BTP STM is diagonalizable. As a small, but useful, extension, if the STM can-
not be diagonalized because of repeated defective eigenvalues at zero, switching to
BTP'=k*BTP (where k=number of roots at zero) will yield a diagonalizable STM.

An alternate method of finding XX(to) is to solve the Liapunov equation

XX(to) = %PXX(to), + XX.

Which merely states that XX(to) is the steady state covariance at the start of each

BTP.

--- Recursions Fortunately, the preceding expressions lend themselves to orderly

evaluation through a series of recursive relationships. Accumulators are established
4 for XX, WW, 'P, and YY; where if accumulates the BTP STM and YY, a scalar,

accumulates the second term in Equation 6.8. Starting at the first event or segment
in the BTP, with the corresponding state transition matrix (0), the state covariance

0
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growth R, and the cost weighting integral Q are computed for the event or segment.

Then, the accumulators are updated using the recursion. This process continues

til all segments and discrete events are included. Then XX(to) is found from

Equation 6.9 (which uses the modal decomposition of T) and cost is found from

Equation 6.8.

The initial conditions are: T - I, XX = 0, WW = 0, and YY - 0. The

recursions are:

YY - YY + tXX *Q, (6.10)

XX = 0 XX OT + R, (6.11)
WW = WW+%pT Q q', and (6.12)

I Q = 4%. (6.13)

Note that the YY update must precede the XX update and the WW update must

precede the T update. Also, Q is defined by Equation 6.6 for analog transitions

and Q is zero for discrete transitions. The R term is the right hand term in Equa-

tion 6.3 for analog transitions and the right hand term in Equation 6.4 for discrete

transitions. Notice that these recursions are valid and stable for stable and unstable

systems and for defective BTP STM's. Therefore a-priori stability knowledge is not

required. The appropriate cost function can be selected after the 'T, WW, XX,

and YY are computed and the spectral radius of T is known. Appendix B shows

how Q, R, and %P are computed for continuous segments.

0 6.1.4 Gradient of Main Cost Function

Define () as the partial of ( ) with respect to any of the adjustable parameters.

When the gradient is required, YY, XX, WVW, and 4 are computed in parallel

with YY, XX, WW, and T. Initial conditions for YY, XX, W'W, and ' are

K' all zero. Parallel recursions for YY, XX, WW, and 'P are obtained directly by

differentiating Equations 6.10, 6.11, 6.12, and 6.13:

SYY = YY+*(XX*Q+XX*O), (6.14)
XX = ,,XXT+OYXXVbT+fXXi+A, (6.15)

@
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WW =- W .T Q • .•_ pIT. Q j and (6.16)

%i = %+0 . (6.17)

Here too, the recursions must be performed in the given order. The expressions for

XX(to) and cost are also differentia.ted to yield:

XX(to) = SI[1, T2]S* (6.18)

+ S[7* T2]S"i + S [T1 h] sH
+ S[T1 T2]SH.

Where:

T1 = S-' XX S-H,

T1 = A-1 XX S -H + S-1 X S-' + S-' XX S-H,

A-i =-S-1 AS- 1,

T2 = + Q - AP), and

= * T2 * T2.

Finally, the cost exprenion is differentiated to yield:

i = 1- -(t(.;X(o.ww + xx(,), WW) + YY) (6.19)
2BTP

These partials are fonmed for each variable parameter. The eigenderivatives

and A are computed from the BTP STM (Q) and its partial (%P) (see Appendix B).

* 6.2 Search Algorithm

The gradient search process begins by guessing values for the variable gains and

installing them in the AD and DS matrices. Next, the BTP STM (Q), the related

parameters (WW, XX, and YY) and their partials (with respect to each variable

9B
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gain) are computed for the specified phasing. The main cost or initial cost function is

selected based on the STM spectral radius. The cost and gradient are computed. A

Quasi-Newton search is performed using the gradient and the Hessian. The Hessian

is initialized at identity and updated with the Broyden-Goldfarb-Fletcher-Shanno

update. Finally, the minimum along the search direction is found by a line search

using a parabolic curve fit guarded by the golden-section step. These optimization

methods are described in [GMW81].

The computer code for the search algorithm assumes that the system is unstable

when random initial gains are used and it queries the operator if stored gains were

used. When initial gains are unknown, random values may be used; but all-zero

gains should be avoided. Setting the initial gains to zero may produce a rare singular

condition where the gradient is not defined. When the system is initially assumed

unstable, the algorithm switches to the main cost function when the BTP STM

spectral radius drops below a threshold (e.g. 0.9). When a search step produces a

marginally stable or unstable system after main cost function is selected, the cost

routine returis a large positive number (1/eps was used). The syatem is treated as

unstable whenever max(X) > 0.99. Numerical overflow was never a problem.

The actual search algorithm code (see Appendix E) was a direct implementation

of the equations givea in [GMW81].
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Chapter 7

Asynchronous Design Method

The vector space of all possible phase values can be divided into a finite number of re-

gions where the BTP STM is an analytic function of phase (reference Appendix C).

In fact, the STM, its eigensystem, and the related quantities (WW, XX, and YY

in the previoas chapter) are polynomials of phase in each of these regions. If these

regions are sufficiently small, a second order polynomial accurately describes the re-

lation between cost and phase. This polynomial approximation gives a simple way

of addressing the synchronous problem with unknown phase and, through that, the

asynchronous problem.

7.1 Synchronous with Random Phase

Suppose we have a system with two independent (not synchronized) sample pr-

cesses with synchronous periods. When the system is turned on, some random

phase is established betweeni the sample processes and that phase remains con-
stant. Hence, the system is synchronous but the phase is random. Assume that the

initial phase, r, is uniformly distributed on (0, T). Let J(O, r) be the cost function

of the previous chapter, where 0 is a vector of the variable parameters. J(0, r) is a

computable scalar that is uniquely defined for eazh 0, r pair. As before, the cost

function is:

EJ t W X(t) dt = 1 T J(Or) dT

I A,. A Af A FVDWVW JV A I U U'UIt W U"XR AUJft &A ILA
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where the second integrand represents the expectation taken over r.

Direct numerical integration is difficult because each J(8, r) evaluation requires

a great deal of computation. As an alternative, the region (0, T) can be divided into

regions where J(8, T) is continuous. Then J(6, 7r) can be found for a few points in

each region and J(8, r) can be modeled as a polynomial in r for that region. This
polynomial is easily integrated and the gradient of the integral is easily found from

the gradients of J(.) at the same sample points.

7.1.1 One Random Phase

The curve-fit approach applies to r's of any dimension, but the rest of this treatment
will deal with the simple case of one sequence with random phase. From here on,

r E [0,T) is a ocalar. In this case, there is a set {tn, t,. . .,tk} with ti E [0,T] and
i - 1,.. ., k such that J(O,r) is continuous for r E (ti, tj+1 ). Therefore, J(.) will be

approximated as a parabola in each region. Note that J(G, r) may be ill defined at

T = ti (a point of possible discontinuity).

Cost and Gradient

Let J1 , J2 , and J3, represent the cost: J(9, r) evaluated at rl, r2, and ra, where:

ti + ti+I (7.1)

T24 (7.2)

2
* and 73 +1 - !(.ý- to) (7.3)

where c is a safety factor to insure that the end points are actually in the current

interval. In the interval (ti, ti+j), the cost function is be modeled as:
S~ J(0, X) = CX2 + bx + a

where a = J2, b = (J3 - Jl)/2, and c = (J3 - 2J2 + J1)/2. For simplicity, r is
replaced by the scalcxl and zero-shifted dummy variable r, where z = 0 corresponds
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to r = r2, x = -1 corresponds to -r = r1 , and x = +1 corresponds to r = r3. Using

this approximation, the contribution to the cost integral is:

1,+1 J(o, r) dr .s (ti+1 - ti)(cx2 /3 + a)xi =._. (7.4)

Likewise, for each gradient component:

j(o,X) = X2 +bX+ a.

where i = J2, = (j3 - J1 )/2, and c= (J 3 - 2j2 + ji)/2. So

Si(8, T) dT (t,+1 - ,1)(ý 2/3 + (7.5)

Finally, the total estimated cost and gradient are found by summing the contri-

butions from each region and dividing by T.

1.1.2 Design Algorithm

The design approach is a variation of the method for synchronous systems with

known phase. As before, the first step is to guess initial values for the variable

control gains. Now, however, the range of possible phase values is divided into,

continuous regions. The synchronous cost and gradient are computed at the center

and near the ends of each region using exactly the same method as before. Then

Equations 7.4 and 7.5 are used to estimate the cost and gradient in each continuous

region for the random phase problem. The contributions from each interval are

summed and the gradient search proceeds as before. In summary, the key difference

is that a composite cost and a composite gradient are used instead of the cost and

gradient (for one specified phase) derived in the last chapter. The composite coat

and gradient for random phase are estimated from several values of the cost and

gradient at specified phase values.

* OFor the random-phase problem, there will always be at least one continuous

region; but there may be many regions if the discrete transition matrices do not

commute and the BTP contains multiple discrete transitions from different sample

sequences. Therefore, many cost evaluations (J(O, r)) may be required to evaluate

a single composite cost and gradient.

SQ
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Cost function selection (main or initial) is similar to the method with known

phase except the switch from the initial to the main cost cannot be made until all

sample points (say at Ti, r2, and •3) represent stable systems. The code implements

the switch one gradient search after all points met the switch criteria. This one-step-

late approach was necessary to avoid storing the STM data (1k, WW, XX, YY,

and their partials) for each phase value until all the STM's are tested for stability.

7.2 Asynchronous Design

The asynchronous design method is exactly the same as the method for synchronous

systems with random phase. The only difference is that the designer may want to

specify higher process noise or measurement noise for the true asynchronous case.

The rationale for using the random-synchronous method for asynchronous sam-

piing follows. Judicious selection of the asynchronous BTP will produce consecutive

BTP STM's which are nearly equal. Small STM differences are simulated by addi-

tional process noise.

The recommended design procedure is to start with a cost function based on a

successful continuous design method such as a good LQG design with a continuous

controller. Then use the synchronous method to quickly refine the discrete gains

at some arbitrary phase. Next, use the random-synchronous method to optimize

the gains for random plhasing. Finally, the asynclronous stability condition should

be used to evaluate the stability of the resulting design. If the design is found

wanting (because W'(A) is too large), then the process noise in the asynchronous

states should be increased and the random-synchronous method repeated. The last

gains are usually a good starting point for the next step.

6



Chapter 8

Design Examples

:* OThis chapter illustrates controller design using the methods developed in this report.

The first series examines the double integrator system of Figure 5.1. The design

procedure is applied to the syzichronous and asynchronous examples of Chapter 5.

Step response plots and stability plots (a and A vs. r) are presented for each set

of resulting gains. Finally, the asynchronous sample rate is varied to show how the

cost function can be used to evaluate sample rate effects.

The second series examines the two-link robot arm of [Ber86]. The synchronous

design procedure is used to illustrate that this method duplicates the original result

[Ber86]. Then, a new asynchronous sampling case is considered.

8.1 DouLle Integrator Examples

The states are numbered as shown in Figure 8.1. The parameters for all double

integrator examples are suzmarized in Table 8.1. Cost weights and process noise

matrices were adjusted by trial and error until the resulting design produced a

reasonable stop response. The cost weighting and noise covariance matrices were:

1 0 0 0 10 0 0
W0= 0 1 0 0 andXO= 0 1 0 0

0 0 0.1 0  0 0 0.1 0

0 0 o 0.1 0 0 0 0.1

59
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PARAMETER Nominal Optimal Synchronous Optimal Asynchronous

C1 0.500 0.666 1.121
C2 0.500 0.115 0.409
C3 2.000 1.025 1.628
T1 1.0 1.0 1.0
T2 1.0 1.0 0.9

Table 8.1: Parameters for Double Integrator Examples

The same Wo and X° matrices were used for all double integrator designs.

- c

C3 X S+ C2

Figure 8.1: Block Diagram for Double Integrator System

8.1.1 Nominal Case

The nominal case used the gains from Chapter 5: cl=c2=0.5 and c3=2. These

values were picked at random. The stability plots for these cases were presented in

Figures 4.1 and 4.2 of Chapter 4. The step responses are shown below in Figures 8.2

NNlS VN P &WS
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and 8.3. For the synchronous sampling case, the phase was 1.0.

0.

0

C - I• I \
°o ,

0-I~ I I

- -- posl tlon

S - -- speed

0 5 10 15 20 25 30
time, see.

Figure 8.2: Step Response: Nominal Gains, Synchronous Sampling

Despite good stability (see Figure 4.1), the step response for the synchronous

sampling case is poorly damped. Good stability as indicated by the a-A plot should

not be confused with good performance.

The step response with asynchronous sampling (Figure 8.3) shows the time-

varying nature of the response. The damping and frequency vary (with period-9).

* This is typical time-varying behavior of strongly-coupled asynchronous systems.

I.A.2 Synchronous Case

SThe design procedure was used for the synchronous system at phase: r = 1. The

optimal gains for this condition were: c!=0.636, c2=0.115 and c3=1.025. The

stability plot for these gains with synchronous sampling is shown in Figure 8.4.

The system is guaranteed stable for all phase conditions except for a small range

near zero (0 < r < 0.08). The synchronous step response for phase=1.0 is shown in
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1-
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Figure 8.3: Step Response: Nominal Gains, Asynchronous Sampling

Figure 8.5. Overall, the stability and performance are good.

Using these same gains, these results were repeated for asynchronous sampling.

The stability plot for these gains with asynchronous sampling is shown in Figure 8.6.

The computed a* was 0.056 indicating that the system might be unstable (although

it wasn't). The step response with asynchronous sampling is shown in Figure 8.7.

The stability and performance deteriorated compared to the optimal (synchronous)

d•sign point.

8.1.3 Asynchronous Case

- The design procedure was used for the asynchronous system. The optimal gains with

asynchronous sampling were: c1=1.121, c2=0.499 and c3=1,628. The stability plot

for these gains with asynchronous sampling is shown in Figure 8.8. The computed

a* = 0.061 so the system is not guaranteed to be stable. Therefore, the stability

test was repeated using a better approximation of synchronous sampling (the exact
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BTP=9.0 was used). The resulting stability plot for the same gains with BTP=9.0

is shown in Figure 8.9. The asynchronous step response is shown in Figure 8.10.

Overall, the stability and performance were good but not as good as the synchronous

case.

1- og (Lambda)

-,og (8 1 gma)
- 1.5

0

O.SI
• 0.5 - i/

a
.00

0

0 *.a 0.4, 0.6 0.0 1

Asynchronous Sequence Phase, teo.

Figure 8.8: Asynchronous Stability Plot, Asynchronous Gains

Using these same gains, these results were repeated for synchronous sampling.

The stability plot for these gains with synchronous sampling is shown in Figure 8.11.

The synchronous step response for phase=1.0 is shown in Figure 8.12. The stability

and performance deteriorated compared to the optimal asynchronous- deign point.

8.1.4 Sample Rate Effects

To investigate the effect of sample rate selection, the period of the asynchronous

(rate feedback) sampler was varied from 0.1 to 1.01 and an optimal asynchronous

design was performed for each sample rate. The minimum cost as a function of

sample period is shown in Figure 8.13.
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140

80

0 0.• BA 8•.6 0.8 1

Rate-Loop SompLe Period. sco.

Figure 8.13: Optimal Cost as a Function of Sample Rate

Minimizing the coat function producetd good controller desigus. Therefore, we
aight use these miniu1m costs to comIpare the goodness of different sample rates.

The figure illushtate the diminishing returns when one sa-mpler becomes much

faster thta the other. The figure also illustrates a apparent worst cease when
both samplers operate at almost the same rate. At first glance, this• see to bea

contradiction. For the earlier dsign case (sce Figure 8.4) the cost was only about

3.5. Yet, Figure 8.13 shows the cost approaching 600 for the synchronous case.

The contradiction is easily solved, The optinal synchronous design caw was

biwsxe on a phase (r) of 1.0. For the optimal synchronous (optimal at r = 1.0)

gains, Figure 8.4 shows that the plant is actually unstable ut other values of r. The
5 cost of an unstable system is infitite. Therefore, when the asynchronous design

method is applied with sample rates approaching synchronous, the desigu at most

1)ase conditions was compromised to achieve stability for the small, previously

urstablC, rtage of phase conditions. So the contradiction is solved. The design

method gives the conservative result: a design that is stable (although just barely)
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•.•" at all phase conditi~ons.
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8.2 Two-Link Arm Examples

A more realistic example is used now. The two-link robot arm and controller of

[Ber86] is used. This system is shown in Figure 8.14. Two sampling configurations

were examined. For the synchronous configuration, the slow samplers (T1) operated

with a period of 0.225 seconds and the fast samplers (T2) operated eight times faster.

For the asynchronous configuration, the slow samplers operated at the same rate but

the fast samplers operated at 27r times that rate. This was truly asynchronous (to

the computation accuracy of the machine). The cost weighting and noise covariance

matrices were identical to those in [Ber86]:

21 0 0 0 0 0 0 0 0100 0 0 000
•°0 0 0 0 0 0 0 O00

0 0 1850 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Wo= 0 0 0 0 1 0 0 0 0

0 0 0 0 0 69.44 69.44 0 0

0 0 0 0 0 69.44 69.44 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

and
0 0 0 0 0 0 0 0 0

0 915.48 0 -2976.4 0 0 0 0 0

*0 0 0 0 00 00 0

0 -2976.4 0 14874.1 0 0 0 0 0

X°= 0 0 0 0 1 0 0 0 0

0 0 0 0 00 0 0 0

0 0 0 0 30000

0 0 0 0 00 00 0

0 0 0 0 0 0 0 00

The same W0 and X0 matrices were used for both designs.

The parameters for the two-link arm examples are summarized in Table 8.2.
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I PARAMETER Optimal Synchronous Optimal Asynchronous

_ _ -0.485 -0.455
13n 11.297 11.046

132 0.393 0.691
'Y -13.483 -12.888

712 1.071 0.568
C12 -0.553 -0.543

1321 0.098 0.095

122 13.439 9.597

721 -0.121 -0.115
"_ _2 -16.865 -11.710
Ti 0.225 0.225
T2 T1/8 T1/(2'r)

Table 8.2: Parameters for Two-Link Arm Examples

211

U1  + f C2 TiC + 1 7 - S&H + 1
+ + (Ti) -

22 al '721

Orl+ S&H X8 2
21 + (TI)

+
41 12 +

+ f2 -1 712 U2

Figure 8.14: Bleck Diagram for Two-Link Robot
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The two-link arm system has a fairly high sample rate and it does not have

strong coupling between controllers. The resulting asynchronous system performs

well at all gain/sampling combinations, but the best performance occurred when

the design gains are used for each sample condition.

8.2.1 Nominal Case

The new synchronous constrained optimization algorithm was applied to the multi-

rate two-link arm system of [Ber86] and the resulting gains were identical to those

published in [Ber86].

The asynchronous stability plot for those gains is shown in Figure 8.15. This

plot shows that the stability is totally insensitive to sample sequence phase. The

corresponding step response is shown in Figure 8.16.

-tog (Lambda)

S1.og (sigma)
-. 0.4
E

-. 0.2
a

• 0

*0

-- 0.4

S0 0.005 0.01 0.015 8.02 0.025 8.03

Asynchronous Sequence Phase, sec.

Figure 8.15: Synchronous Stability Plot, Synchronous Gains
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Figure 8.16: Step Response: Synchronous Gains, Synchronous Sampling

8.2.2 Asynchronous Case

To evaluate asynchronous sampling, the step response was repeated using the same

gains but with the asynchronous sampling condition. The result is shown Fig-

ure 8.17. The step response is somewhat degraded.

Some step response degradation resulted from the overall slower sampling rate

and from the mismatch between gains and sample rates. To investigate this, the

asynchronous design algorithm was used to find a new set of optimal gains for

the asynchronous sampling condition. The resulting gains are shown in Table 8.2.

The asynchronous stability plot for the new gains is shown in Figure 8.18. The

step response with the asynchronous gains and asynchronous sampling is shown

on Figure 8.19. Except for a slight difference in initial overshoot, this response is

nearly identical to the optimal syvchronous response.

Finally, the step response was repeated for the asynchronous gains and the

*• synchronous sampling condition (see Figure 8.20). This response is slightly slower
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Figure 8.19: Step Response: Asynchronous Gains, Asynchronous Sampling

than the best results but quite good overall.

For the two-link arm system, the asynchronous controller is nearly as good as

the best synchronous controller.
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Chapter 9

Practical Considerations

9.1 BTP Selection

For the asynchronous case, BTP selection is left to the designer. There are an infinite

number of BTP choices. Long BTP's provide better approximations of synchronous
sampling but long BTP's require more calculation (for 0, WW, XX, YY, and their

partials). Furthermore, even slight improvements in the BTP match eventually

require large increases in the ITP. Clearly, this is a diminishing returns situation.
Incidentally, the design method is not compromised by long BTP's (although the
computational burden is high) because the cost is the true continuous-time integral

of the weighted mean square error. However, the sufficient stability condition only

considers errors at the ends of BTP's; so short BTP's may be more appropriate for

the stability test.

* The following rules and rationale were developed to guide the best selection from
a finite number of alternatives. Suppose now, that the designer starts with a list of

candidate BTP's. For example, this may be all candidates with BTP's shorter than

one minute. Such a choice would be reasonable if the plant time constants were on

the order of a minute.

77
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9.1.1 Rule of Thumb

Let T1, T2,..., Tk be candidate BTP's which contain nvi, n2 , ... , 7nk discrete events

and which have consecutive phase slips (1, (,..., (k. The best BTP is the one with

the lowest nj * (j product.

Consecutive phase slip is the difference in phase between consecutive BTP's.

Phase is defined as the delay from the start of the BTP to the start of the asyn-

chronous sample sequence. The other sequence is called the synchronous sequence

because it is synchronous with the BTP.

9.1.2 Rationale

'_ Recall that the continuous-time state transition matrix for elapsed time C can be

computed as:

A 

I
0]1

Now assume that ( is small so this can be approximated by the first two terms of

the series expansion fur the exponential:

-t A BO0

'0 0 0.

where Z is defined as indicated.

Lot sequence 1 be synchronous with the BTP while the sequence 2 phasing
"slips" by ( from one BTP to the next. Suppose we expand the state transition

matrix for the first BTP as:

%k i = D3 12D 2112. 'D-III.-ID,,n

where DA is a discrete transition in sequence 1 and Hi includes all the continuous

transitions and all the discrete transitions from sequence 2. Then the state transition
matrix for the next BTP will be

o '2 = Djb(S)nzciC-()v2(c)II2...
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providing that none of the sequence 1 dikrete transitions transpose with sequence 2

discrete transitions. Using these approximations for 4 we get:

P2 ý- D,(I + ZC)III(I - Z()D2( + Z0)12 ... I-0 - ZO)D,(I + ZO)II(I - ZO)

= T + ([ D1 Z1I1 D21II2"'D._III,•ID.II,

-DIIIIZD 2II2 ... D,_iII._ DJII,
: (9.1)

DII1IID2112 ...D,-_IIIID.ZII,

-DiID 2112 • .DR.. _IIlI-DnZIlI

The basis of the asynchronous analysis and design approaches is successive BTP

state transition matrices which are nearly equal. This means that the last term in

Equation 9.1 should be small. We cannot say much about this term, but two things

are clear. First C multiplies the whole thing so ( should be small. Second. the

number of terms in the brackets is proportional to the number of discrete events in

schedule 1 during the BTP. So the number of discrete synchronous events during

the BTP should be small. The rule of thumb follows from minimizing the product

of these two items.

9.2 Asynchronous Analysis of Synchronous Sys-

tems

It may be more appropriate to design and analyze a synchronous system as if it were

asynchronous. For example, assume a system is synchronous but the real DTP is

very long (much longer than plant time constants),

The computations would be much easier if the system were treated as asyn-

chronous with a shorter BTP. Furthermore, we are normally interested in behavior

during time intervals much shorter than the BTP. Although state errors may de-

crease over the whole (long) ITP, they may grow unacceptably during some portions

of the BTP (i.e. short term instability). When behavior during periods shorter than

the BTP is of interest, it is appropriate to use a short "fake" BTP and analyze the
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system as if it were asynchronous. In this case, r is not uniformly distributed;

rather, it assumes a finite number of values depending on the initial phasing and

sample rate. Hence, only a few evenly-spaces the points on the stability curves

are relevant. Still, o* and the A and a curves give good estimates of the stability,

particularly if the exact phasing is unknown.

9.3 Accelerated Convergence

The design method is completely automatic; however, some manual interaction

can accelerate convergence to the optimal solution. The synchronous optimization

* process is much faster (at least three times faster) than asynchronous optimization.

Consequently, the synchronous method should be used with some representative

phase condition to find initial gains for the asynclhrnous optimization process.

The asynchronous optimization search cannot switch to the stable cost function

until stabilizing gains are found for all of the phase conditions (curve-fit points).

When only a small phase region is unstable, this search can be very slow or it can

stall altogether. This is usually cured by one or two synchronous optimization steps

at the offending phase condition. Alternatively, if there are several smaU disjoint

unstable regions, the power in the initial cost function can be increased. Fourth

and eighth powers were used in the examples but these can be increased within the

numerical precision of the computing hardware.

9.4 Cost Weighting Matrices

Choosing good noise covariance and cost weighting matrices is not simple. (BerS6]

demonstrated that matrices selected to produce good continuous-time designs also

worked well for the multirate controllers, Bawd on this and the relative ease of

continuous-time design methods, these matrices may be developed by first desig-ing

a "good" continuous-time LQG controller and using the same cowt and covariance

e. matrices for the multirate discrete design.

OE
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9.5 Numerical Properties

The design and analysis calculations rely on two matrix operations that may present

numerical problems. These are spectral factorization and matrix exponentiation.

While these two matrix functions always exist (in theory) computing their values
can be a significant numerical problem. The codes for the sample problems used

PC-MATLAB (MLBK85J which implements the EISPACK algorithm [SBD*"16] and

the Pad6 approximation algorithm LMVL78]. One attempt to use another matrix

package (which used an eigensystem approach for matrix exponentiation) was un-

reliable. Any implementation of the methods presented in this paper should start

with fast reliable algorithms for these two matrix functions.

Maximum System Size

P • Practically, the maximiu system size for the method is limited by the numerical

precision of the various mathematical operations. Assuming that the BTP is rea-
sonably short, the vcxious STM-related matrices (,D, WW, XX, YY, and their
partials) can be computed with only small errors since matrix multiplication and

addition are the only operations involved. Also, the closed-loop system eigeuvector

matrix (complex) must be inverted, but this should be a well-couditionted matrix
in the vicinity of the optimal gains (otherwise, S"1 XX S-1 in equation 6.9 gives
high costs). Other inversion processm use the i cudo-iikvea so ill coaditioning is

not a problein

With no analog gains (in A or B), finding the Q matrix requires exponentiating

a 2(n, + n,) by 2(va, + n.) matrix where n, is the number of continuous states

and n, is the number of sample states. If there are variable gains in the A or D
matrices, a 3(n, + n,) by 3(n, + n,) matrix must be exponentiated to find Q. Also,
the STM eigensystem (dimension equals number of states) must be found for each

gain/phase condition evaluated. The ability to accurately find these transcendental

matrix functions limits the size of the system these methods can handle.

No attempt was made to quantitatively determine the inaximum system size

as a function of algorithm accuracy. The PC-MATLAD routines use the IEEE
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standard arithmetic in the 8087 numeric coprocessor. Each real value is 64 bits

(52 for the mantissa). Unusual behavior attributable to numeric problems was not

encountered.

9.6 PC-MATLAB Implementation

PC-MATLAB was an excellent vehicle for developing the prototype algorithm. The

compile and execute speed were good, but more importantly, the high-level MAT-

LAB language allowed very rapid, reliable code development. Furthermore, the code

is quite readable. MATLAB's modularity and consistency checks assisted code de-

bugging significantly. However these very strengths created limitations that could

be significant if execution speed and storage efficiency are paramount considerations.

Pointers and Tables

PC-MATLAB executcs built-in functions (like rmatrix exponentiation and modal de-

compoition) very quickly but logical constructs ("for" loops or ¶if" loops) execute

slowly. Therefore, brutc-force cakulatimow were often used in place of seemingly

more efficient constructs. For example, in PC-MATLAB, it was much faste'r to re-

compute a frequently-used matrix exponential than it was to brach to a subroutine

for table look-up. Similarly, it was faster to storm a spxars tatix and inrltiply by

the whole matrix than to use pointers to the few non-zero elements. For impernmn-

tation in some other compikd language, significant speed and storage improvements

* may be obtained through the use of pointers and table look-ups.

9.6.1 Square Root Algorithms

*:@ Several symmetric matrices (WW, XX, rend the Hesian) are propagated usi•g

update. of the form:

where Y and Z are symmetric and non-negative defiite. T"is is the same form as

the KIdahan Filter covariauce propagation equation. That suggests using a square
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root algorithm [Kai8l] [BH75] to accomplish the propagation. This was not at-

tempted in the prototype code because MATLAB only deals with rectangular ma-

trices and "definiteness" problems were not encountered. Therefore, there was no

storage or computational advantage to implementing the square root algorithm in

the PC-MATLAB code. However, implementations in compiled languages that can

exploit the storage and computational advantages of triangular matrices would ben-

efit from a square root propagation algorithm.

*

N
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Chapter 10

Summary and Recommendations

10.1 Summary

A sufficient asynchronous stability condition was developed. The figure of merit
describes an exponential envelope which bounds the worst-case average state error
history for any initial condition. The figure of merit is found through numerical
integration of quantities computed from the system state transition matrix. The

integrands have useful physical interpretations.
The Constrained Optimization Method of Berg [Ber86] was generalized and

reformulated. The resulting method is more efficient, it avoids numerical overflow
problems, and it includes discrete measement noise. The reformulated method

was shown to replicate Berg's results.
The reformulated constrained optimization method was extended to the syn-

chronous sampling case with random phasing. This extended approach produced
satisfactory controllers for several asynchronous sampling cases.

10.2 Recommendations for Future Research

Recoding the method in a compiled language is tedious but could provide substantial
speed and storage improvements, An improved linear search algorithm should give

* an immediate speed improvement. The other approaches listed in the last chapter
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(square root algorithms and table look-ups) should also provide more speed.

Modal decomposition accuracy and matrix exponentiation accuracy appear to

be the limiting factors on system size. This relationship could be explored to find

the practical limits of the method.

The robustness with respect to sample rate, controller gain, and plant uncer-

tainty should be investigated. Designs resulting from this method should have good

robustness since they minimize a continuous LQR cost function and continuous LQR

designs have desirable robustness properties. However, nothing is actually known

about the robustness properties of these designs except that the cost gradient is

zero (with respect to the gains).
Methods of selecting sample rates should be investigated. All existing design

methods begin with specified sample rates. If some equivalence between controller
computational operations and cost function is specified, then an optimal sample

rate should exist.

.Methods of selecting the cost function weights and process noise should be inves-
tigated. Existing design methods begin with specified values for these matrices (Wo

and X0 in this paper). Berg [Ber86] suggested using a satisfactory continuous LQR
design as the basis for the diagonal blocks and this seems to work well. However,
use of the off-diagonal blocks to avoid saturation may merit further investigation,

Methods of balancing the eigenvector matrix should be investigated. The suffi-
cient stability condition is sensitive to the scaling of the BTP STM (%P) elgeuvectors.
This also affects the numerical precislion of the design algoritha. The optimal scal.

ing could be investigated.
Methods of extending the method to systems with defective and ill-conditioned

DTP STM's should be investigated. The design method used the modal decom-

position as a convenient way to solve the Liapunov equation for the steady-state

covariance. However, the steady-state covariance exists for all stable systems. Con-
aequently, the method should extend to all cases given another solution to the

Liaputov equation.



Appendix A

Eigensystem Derivatives

This appendix develops formulas for the first partial derivatives of a matrix eigen-
value and eigenvector as a function of the matrix, its eigenvalue, its eigenvector,

and the first partial derivative of the matrix.

A.1 Problem Statement

Consider any non-defective real n by n matrix Z. Let Aj be an isolated non-zero
eigenvalue and aj the corresponding eigenvector.

Since Z is not defcctive, it can be factored:

Z SAS' (A.1)

where S = [s." ... ,-.] is a matrix of the n independent eigenvectors and A
diagn[A...=..., 4,% is a diagonal matrix of the corresponding eigeuvalues in the same
order.

Since A, and 3j are an eigen-pa-:

Z3 Zs, i (A.2)

by definition. Also, the norm of a, is arbitrary so choose 113412 1 for convenience.

Suppose Z is actually Z(a) where a is some scalar. Define

87and i

87
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Then, the problem is to compute Ai and si given Z, Z, Ai, and s,.

Since the norm of s, is arbitrary, let

=1 (A.3)

where the "H" superscript indicates the conjugate transpose (Hermetian). Differ-

entiating with respect to a gives 0'si + 0i = 0 or

R(0 s,) = R(S!'ý) = 0 (A.4)

This means that, for a constant-length eigenvector, ii can be expressed as i=
i" + jiys, where i is in the orthogonal complement subspace of s, so •"i = 0,

S= vL'2 T, and y/is some real constant.

A.2 Equation Development

Start by differentiating Equation A.2 with respect to a:

Z23 + Zi, = Aii + A,. (A.5)

Observe that the right-hand side is already divided into a component in the si
direction and a part in the subspace where I resides. Prc-multiplying both sides

by 91 and solving for A,:

= aY2±si +41'(Z - A~i)ij.

Observe that si is in the null space of(Z-Ail) so if1 = 9 +j'ysi, only i influences
A, and -y is irrelevant. Using this fact, we can simplhfy the equation somewhat:

*. A, Z + es'(Z - Aijsýi y-siZa + i 0%(A.6)

Now, pre-multiply Equation A.5 by (I- ssf') to project into the orthogonal

complement subspace of 4i

0 (I- a~~~al')23. + (- ~ A(
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which can be regrouped as

(I - s (I - sjs#')[AjI - Z](iAt + j'yai) =[AI - (I - js?4')Z]iAt. (A.7)

The unique solution is given by

S= [A,I - (I - - ss3')2s, (A.8)

if the matrix [AI - (I - .sys)Z] is not singular. This non-singularity requirement

will be explored further in the last section.

If Equation A.8 has a unique solution, then it can be used to compute i-" and

that result can be used in Equation A.6 to compute the respective A,. If Ai and

ji are available, calculations require solving one set of complex linear simultaneous

- equations (of form Ax b), four complex vector-matrix multiplications and five

complex vector products.

A.2.1 Eigenvector Derivatives

The eigenvector derivatives may require an extra step because ii = i + j~si and

7 is still unknown. For si real, •, will also be real so -1 is zero. Hence, hi = hý for

real eigenvcctozs.

For complex eigenvectors, the solution requires separate consideration of the real

or imaginary parts. The real part of Equation A.5 can be written:

iv + Z(8(iý) - 7w) = & - 6 + u(() - YW) + w(Ia(•) + 4).

where s., =v + jw and A = a + jw. But 7 is the only unknown (ut, 1o0, w,1 ,

and i" are known). Therefore

( &Iv + (PL + 1Z -a X(St) - W%' i) = '((z- alw + WV) (A.O)

, where everything is known except the real scalar -j. Any non-zero component is

sufficient to compute -j. In practice, the vector ([Z -aljw+wv) should be computed

and the largest component should be used to frid y. Then only the corresponding

component of (2 - &Ilv + t~w + [Z - oI]•(i) - wl(,') need be computed. The

extra work to find y is one real matrix-vector product and two real vector products.

V
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A.3 The Singularity Condition

Theorem 5 The matrix [A•I - (I - sief')Z] is not singular when Ai is a distinct

non-zero eigenvalue and Z is not defective.

Proof: Since Z is not defective, Equation A.1 can be used to factor Z giving

[Ail - SAS 1 + is#SAS-1 ].

This matrix is non-singular if all the eigenvalues are non-zero. To see the eigenval-
ue-, apply a similarity transformation by post-multiplying by S and pre-multiplying

by S-1. Since Z is not defective, S is invertible, and the eigenvalues are invariant

under the invertible similarity transform. After canceling S-IS terms, where ap-

propriate

[Ail - A + S-a'sisfSA).

Consider the term: S-'as?1 SA. This can be resolved as follows

Jo•s = Ow" '..-. piw 11,po-.-#*

where ed is' a unit vector in the i'th direction and j3,, is the inner product between

sj and sII (always 5 1). So

0 ... 0 0 0 ... 0

0 0 0 0 0

0 ... 0 0 0 ... 0

* :. S

0 ... 0 0 0 *.. 0

Now add this to the two diagonal arrays: AI - A for the following result:

S` (Ail - (I - ,s')ZIS =

SS
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n -AI '" 0 0 0 ... 0

0 ... Ai-A,-I 0 0 ... 0

A .l..i "'" Ai-4/li-,i' Ai Ai+if•i+l,i "'" A',fii (A.10)

0 ... 0 0 Ai-A+. 1 ". 0

0 ... 0 0 0 ... A-

By inspection, the matrix is non-singular when all the diagonal elements are non-

zero. In fact, the diagonal elements (Ai - A,, .. , Ai - Ai- 1, Ai, Ai - Ai+l,' • ', Ai - An)

are the eigenvalues. So the necessary and sufficient conditions for non-singularity

are: Ai 6 0 andA, 0 Ai for all j:0 i.

This completes the proof but it is interesting to consider Ai = 0 further. If A, = 0

the null space of the matrix on the right side of Equation A.10 is ei. By reversing

the similarity transform, we see that the null space of the original matrix (when

Ai = 0) is aj, the eigenvector of Z corresponding to Ai. Since we already know that

h4 is orthogonal to 3, the fact that a1 is a null space of [Ail - (I - si. )Z] makes

absolutely no difference in Equation A.7. Therefore, Equation A.8 is still correct

if the pseudo inverse (which has colums orthogonal to a,) is used in place of the

ordinary inverse.

A
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Appendix B

Discrete Conversion

In Chapter 6, the quantities 0, Q, and R were defined for continuous transitions
with no discrete events. Methods are developed here for computing 0, Q, R, and

their partial derivatives with respect to a scalar variation in the state differential
equation matrix. These results are based on Van Loan's work [VL78J.

B.1 Problem Statement

Assume a linear, time invariant continuous system described by matrix state equa-
tion ie - Ax, + B1. where z, is the continuous part of the state vector (which is
changing) and x. is the sample and hold part of the state vector (which is constant).
For convenience, A and B arm grouped into a single matrix:

S~z4 A B].

0 0B

Let A and B be a function of ascalar such tlat

The desired results are expressions for the matrices f, Q, and R defined earlier
* (see Equations 3.3, 6.6, and 0.3). For efficiency, the following abbreviated forms

03
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and their partials will actually be calculated:

P(t) = exp(Z t), (B.1)

4(t) = exp(A t), (B.2)

RP(t) O k(S) xII O(S)T ds, and (B.3)

Q(t) =- 10 t(S)T W.o (D(.9)ds, (B.4)

where 4~i is the continuous process noise covariance matrix and W,. is the top left

corner of the cost weighting matrix (for the continuous and hold states). To obtain

the correct form for the Chapter 6 expressions, the rightmost columns and bottom

roars must be added to get the correct size matrix. R should be filled with zeros, 0

shoul be filled with an identity matrix, and Q should be filled with WO t.
Also, we need the partial of ), Q, and R with respect to a scalar a. All these

partials should be right filled and bottom filled with zeros to obtain the correct

sizes.

B.2 Van Loan Results

Van Loan [VL781 proved the following: If
-1 A, B,. C,

C= 0 A2 B2

fo 0 A
is a block trinua matrix of constants andI~i0 F2(f) GI(t

0 0 F2(t)

G,(t) 0 t,,,-,) BiCA,l a d3, and (B.6)

HA(t C eAI(I-) C, e A"+3 dj + f Ij eAj(t-*) B 3 cA,.j(*ý) B11+% CA+ dr d3. (B.7)

0
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B.3 Main Result
-zT W- 1o Fi(t) Gi(t Hi(t)

Let CQ= 0 Z 2 and e(C•0= 0 F2(t) G2(t)
0 0 Z 0 0 F3(t)

Then:

k(t) = F2 (t) = F3(t), (B.8)

=G(t), (B.9)

Q(t) F2T(t)GI(t), and (B.10)

OQ(t) =FT(t)HI(t) + [FT(t)H1(t)]T. (B.11)
9a

Parallel results are obtained for R by replacing Z with AT and W,, with x%.,

' [-A xj, 0 F1 (t) GI(t) H1 (t)

Let CR 0 T AT and e(CRt) 0 F2(t) G2(t).

0 0 AT 0 0 F 3 (t)

Then:

RX(t) = F2T(t)Ga(t), and (B.12)
OR,(t) FT(t)HI(t) + [F2T(t)H 1(t)JT . (B.13)

Oa 2

If only • is required, it can be found from

8:1
so

e(Ca) = O0 (B.14)
0 ezt

When partials are not required, Q and R are found using the top left two-by-two

bloclk of CQ and CR in Equations B.10 and B.12. This simplifies the calculations

for cases without variable parameters in the A or B matrices.

B.4 Proofs

Equations B.8, B310, and B.12 follow directly from the definitions and fromi Van

C Loan's results in Equations B.5 and D.6.
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B.4.1 4 Partial

P has a series expansion:

Z2t2 Z3t3
-I + Zt + -+ +... (B.15)

where Equation B.15 is the ordinary expansion of a matrix exponential.

The series expansion of the partial of -D with respect to a is found by differen-

tiating Equation B.15 term by term:

010 = 2t+ (ZZ + Zz)t2  (2z2 + ZZZ + Z22)t3 (B.16)
49a 2! + 3!+'("

Compare this with:

*exp([1 0

Expand the first few terms of the exponential series for:
: ] + [Z2 t + [.2..2+ Z

0 1 0 Z 0 Z2 121

The top right block in the first few terms certainly match the desired result. We

will prove that the top right block is the desired result by induction. Assume the

the matrix part of the k'th term of the series expansion is given by:

[Zk (z•k1Z+Z -h2Z+...+2Zhk1)
0 Z k'

Then the next (k + 1) term will be:

Z9[ (Zk&1±+Z-2•Z+...+ jZZ- ]) Z ]
0 Z h1 0 ZI

=[Z+I (Z42+Zk-4Z +...+±Zk)J0 Zk+i

So, we have proved by induction that:

] [1
exp 0* ) e . (B.17)0 z 0 exp(Zt)I
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Compare this with Equation B.6 for A, = A2 = Z, B1 = Z, and C1 = B 2 = A3 =0

and we can also conclude that

Oeztjt eZ(t-S) O~Z da= eQ8 tad.(.8

At this point, direct comparison with Equation B.6 confirms Equation B.9. So,

Equations B.9 and B.14 are proved.

B.4.2 Q and R Partials

Equations B.11 and B.13 are duals so only one of them need be proved. Equ%-

tion B.11 will be proved since its notation closely parallels the previous section.

Begin by taking the partial differential of the Q(t) definition with respect to a:

-90 ) -(D )T W C, &(()) 4 +ita.(S)TW

4TU & jO()T 8 3+ Oa

Now, substitute Equation B.18 for the partials to obtain:

OQ(t) _=f (S)TW j ez(1-) W e2' drda (B.19)

+ J eJ "'T eZT 8 T(I- dr W,4 O(s) da.
00f

Recognize that the second integral is the transpose of the first and that the first

is equal to F3'(t)H,(t) from Equation D.7 with C CQ. This completes the proof.
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Si

0

0



Appendix C

STM Continuity

0 C.1 The Phase Condition

Consider an asynchronous hybrid linear system. Such a system includes a linear,
time invariant continuous part with two or more asynchronous sample processes.

A basic time period is established (perhaps arbitrarily) and this establishes a time
window of interest. Let all the sample schedules be phase locked to the BTP except

one that is allowed to slide with respect to the BTP. Figure C.1 illustrates this

setup.

Suppose the state transition matrix (STM) for the BTP is expanded as:

where %'P is the STM from the start of the BTP to the first event in the sliding
sequence, S, is the STM for the first discrete event in the sliding sequence, etc.

Now, allow all the events ir, the sliding sequence to slip At into the future where

At is small enough that:

1. None of the events in the sliding sequence leave or enter the BTP, and

2. None of the events in the sliding sequence meet or reverse order with events
in any of the other sequences.
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1 1 1

hz 7 7 T1 :i l time

Key Sequence

BTP

2 2 2 2 2 2 2

Sliding Sequence

* Figure C.A: Phase Relationships

Then, the BTP STM for the slipped sequence can be written as

@(slip) = %Dk 0(-At) S.ý_. ID(At) Vk-,... %P2 4(-At) st 4D(At) ID1

where t(6t) = exp(Z At) is the continuous state transition matrix for an elapsed
time At.

Since O(At) is a continuous, analytic function of t (a matrix polynomial in fact),

and all the other matrices are constant, T is clearly a continuous analytic function

of the slip.

Since this slip is synonymous with the phase (-rj) of one of the asynchronous

sequences, the BTP STM is seen to be continuous and analytic with respect to the

phase vector as long as the two conditions are met.

The total phase space can be partitioned into regions where 'P is continuous

simply by finding the boundaries. So the problem is to identify all the delays r

where r,, E [0, Ti) such that

lim T(r - e)0 'P(r,+ d)
4-.0

where Ti is the period of the asynchronous schedule and %P(r) is the state transition

matrix for one BTP with phasing r. The easy way to do this is to ideittify each

phase value where either of the two conditions occurs. This approach nay find

0
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discontinuity boundaries where the STM is actually continuous, but that is not a

problem.

C.2 Boundary Conditions

There are two conditions that can produce an STM discontinuity: first, when a

discrete event enters or leaves the current BTP, and second, when discrete events

reverse order. These will be considered one at a time.

For the rest of the discussion, it is assumed that there is only one asynchronous

sequence with period T.

C.2.1 BTP Truncation Cases

Let p be the remainder when the BTP is divided by T. That is to say, BTP = klT+p,

where k is an integer and p < T. Then, the BTP contains k complete periods of

the asynchronous schedule when T E (0, p) and only k - 1 periods when r" E (p, T).

It is unreasonable to expect continuity when the number of complete cycles in the

BTP changes, so ri is a candidate discontinuity point if:

r, = p-4 eor r = T- &p (C.1)

where 4k is the time from the start of the asynchronous schedule to the k'th discrete

event in that schedule.

C.2.2 Commutivity Cases

Suppose there is a value r, such that a discrete event in synchronous schedule

coincides (in time) with a discrete event in the asynchronous schedule. Fturthermore,

suppose the coincidence occurs during the BTP at r -- ri. Then the order of the two

discrete state transition matrices will be reversed in T(r, - e) and T(rs + e). If these

two discrete state transition matrices do not commute, then t, is a discontinuity

point.

0O
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This condition can be described mathematically as:

kiT 1 + ý1j :_ BTP, and k1T, + 6i = ri + k2T2 + 62k and Dl1D2k $ D2kDij (C.2)

where

k1, k2 are any integers,

T1 is the period of the synchronous schedule,

T2 is the period of the asynchronous schedule,

ýjj is the time from the start of the synchronous schedule to the j'th discrete event

in that schedule,

S2k is the time from the start of the asynchronous schedule to the k'th discrete

event in that schedule,

bij is the state transition matrix for the j'th discrete event in the synchronous

schedule, and

D2U is the state transition matrix for the k'th discrete event in the asynchronous

schedule.

C.2.3 Recap

Equation C.1 mad Equation C.2 define the phase of all potential discontinuities in

* the current BTP state transition matrix. The actual values can be found by a

simple but tedious exhaustive search.

Discontinuities in the previous 13TP state transition matrix can be found by

substituting T2 - r for r and working backwards from the end of the period and

BTP. The union of discontinuity times for the current and previous BTP's is a

candidate discontinuity set for th,, eigenvector function SSi-21.



Appendix D

Theorem Proofs

This chapter provides proofs of the four thcorems used in Chapter 6.

D.1 Notation and Definitions

The following notation is common to the proofs.

*x(t) = vector of the continuous-time states

* X.(t) = vector of the sample-and-hold states

* Zxd(t) = vector of the discrcte-time states

* X(t) = the full state vector [4' 4.12'T),

9 XX( = full state vector covariance: B{X(t)Xr(t))

e wt(t) = vector of the continuous-time process noise

0 w.(t) = vector of sampling errors

* Wt(t) = vector of discrete state update noise

* -U(t = augmented vector of continuous process noise = [w Of]

• -,(t) vector of discrete process noise = [0 W.T Wl]T
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e N(t) total process noise vector

* We(t) = state error weighting matrix for cost function

D.2 Theorems and Proofs
Theorem 1 Let x,. be the partial state vector: [zT X such that

is = (AB] xc, + n.,

where n., is white continuous process noise with covariance:

E{nc(s)nT(t)} = [XO 0] 6(s- t) = X° 6(s - t)

where 6(.) is a unit impulse at zero.

If xx(t) - E{x,.(t)xT(t)} and there are no discrete transitiona between t = 0

and t = t1 , then

xx(t 1 ) = 0(t1 )xx(O)O(t1 )T + RC(tI)

where O(s) =-exp([AB) s) and

R0(ti) = Lo1 O(a)X"I(3)T d3.

Proof: From linear system theory, for t _t,

XC'I(t) = ,(OXO(0) + j 0(s)n 0.(s) ds.

So,

( (O)Or(t) + f)
*I The process noise is uncorrelated with the initial state so E{Bx,(s)n•(t) =0 for all

s' < t. Therefore, the cross products are zero. Evaluating the remaining terms:

, E{b~f~.(O~T(O)OTr(t)} = 0(t)B~x(Xo()XT(o)}OT(t)

a•_. = 0(t)XX(0)Or(t)
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and

-- jo(r)Xn, T(r) dr.

Therefore,
x(t) ---- 4(t)xE(0) T(t) + f (r)X°, T (r) dr

Theorem 2 Let [X (zT 2 T 4 ] be the ftsll state t'ector. Let 'Pd be a discrete state* tran, sition matri$, w here X(t+) 0- OdX(r) + dr (t)

and where nf(t) is white discrete process noise with covariance Rd.

If XX(t) E_ {X(t) XT(t)} and the discrete transition 'Pd occurs at time to,Sthenxx (to) = 'dxxX(to) + f + ird.

Note: let Rid = [PR.,]. Then RP, is zero unless 'Pd updates state i or state j.
TProof: From the state equation,

xx(o) =( ( dX()+ ( (t) +

a But E{X(t-) i(it0)) e- 0 and E{nd(to)nw(tJ)) = 6cvRd.

So, XX(t) = E(,dX()XT(-) ) a , h + Fdiscnrt } = tn dXX(tiT ' + te.

Theorem 3 Let X be the fu/l state vector: (xr r 1  n
XX tX = Gdt)X +N( qt).

G(t) is stable w=ith a corresponding state transition matriz es(4, t). N(t) is ohst e

process noise and E{N(r)N= (s)) = 6(r - s) Rd(s).

Let XX(t) =- E(X(t)XT(t)}, to > t.• > t 2 -.. , and Umi...,(t.) -00.
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Then if R, =- E{X(t,)X T (t,)} when E{X(tj-_)X T (tj_,)} = 0 (i.e. the covari-

ance growth from ti-_ to t•) then
--00

x�ot 0) = , P(to, t,)Rp (to, t,)T.
i=O

Proof: Let t-_ be some time in the past. Then:

X(to) = T(tO, -k)X(t-k) + J" '1(to, r)N(r) dr

or

X(to) = %D(to, t-k)X(t-k) + j ] (to, r)N(r) dr.
i=0 -

So,

XX(to) = E{P(to, t-k)X(L-k)XT(Lk)PT(to, t-k)}
(-(k-i) ~.,

+ E{ E, P(to, r)N(r)dr -k ItINT(s)•PT(tos)ds}

xx +to) = '(to,t_ k)EX(t- )xT(t j)} rT(q, L.,)

-(k-i) t.,+ : j.'(to, r)E{N(r)XT (tdi), drNT(te, -i))

*X~to) + lP(to, t.-.,) [, E {X(.k)N) TT() , Tt 0 )d

-(k-1) -(k-).p

+ viX J ''to'r)j E (N(r)NT(i)) q, T(to,, s) dLdr.
fiO j=O

Observe two things. First, the system is stable so E(X(t)X T (t)) is fiuite and

imk,..o 0(to, t-k)E{X(t-k)X T(t-k)} 2T (to, t.,) = 0. Second, the noise is uncorre-

lated with prior noise and with prior states. Therefore, the croms contribution from

disjoint intervals is zero, i.e. E{W(s)Wr(t)} = 0 when . and t belong to different

intervals. Therefore, all the cross product (i # j) terms are zero.
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So

lim XX(to) = iJ "-I q(to, r) J4'1 E{N(r)N T(S)}%pT(to, s) ds dr
k--.o i=ti 4

-- j , C(to,r)RCr)(r T to, r)dr.S~i=0 -

Each '(to, t) can be factored as P(to, ti)T(ti, t) so

-- Co'•W• Ji~mXX(to) -= E T(to, ti) T •(ti, r)R,,(r)*lT(ti, r) dt, TT(to, ti).

k i=O -d

But the term in brackets is just R,, as defined above.

* Theorem 4 Let X be the state vector: xrT XT ?T]T such that

4~G X G+ N

uwhere G is constant and N is white stationary process noise with covariance
S•tot 0 0

0° 0 O0

Let XX(t-) M E{X(t.)XT(tj)) and Wo be a symmetric matriz.

If there are no discrete transitions betwean timc= 0 and time= t, then

J(t,0) .• E{f XT(r) Wo X(r) dr}

i~ (x~o * ~(r~ W 'Pr) dr)

+ J(~ I'J: *T(s) Wolit(3) didr.)

0where J( t, 0) is part of the cost integral for the scgiment (0, t), "0* denotes element-

by-element matrix multiplication, denotes the aLeraic sum of the matrix iek-

ment3, and -2(t) S X([ ex
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Proof: From linear system theory,

X(t) = %P(t)X(O) + fO %L(s)N(a) ds.

So,

E {f0 X(s)TWoX(S) da)

-E{jX(~qTr + N T(S)%p T(q)dS)

(41s(r)X(O) + j 4Ptu)N(u) du) dr).

But X(O) and N(t) are uncorrelated if t > 0 so the expected value of the cross

products is zero. Therefore,

E (1 1 ~s)VVD(s) ds)

= E(j0 XT(O)TrT(s)WoP(S)X(O) ds,)

+ Ej (j'(1 NT(s)&TP2 (3)dSi)W. wo ~ T '(u)N(u) d~t) cir).

li the fust term, the constant X(to) cau be brought outside the iutegral.

E{vX(O)(f0 gt(s)IWoI(s)ds)X(O))

Likewise, the process noise is stationary and the expected value operation will

yield a cotistant. Therefore, it too can be moved outside the intr iutegrala as

follows. Por the other term.

E(f' "J?(.)r3 di) W.L-Quj V du) cir)

Ef E( J NT(s)T*r(9)WuoT(u)N(u) duds dr)

= El Iol•,O O UO !(N(u)N T (s))*(%T (3)1VoQ(u))du dsdr)
4L
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1 )(f2T (.s))W*o T (S)WO (U))du

- of0 tX0 * (,;T(S)Wo%(u)) ds dr}
=>X°*j I QT(s)Wo(s)dsdr}

since xo is a constant which can be brought outside the integrals.

0i~ex
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I



Appendix E

Computer Codes

The algorithms for stability analysis and for asynchronous design were implemented
in PC-MATLAB and executed on an IBM-PC clone. The MATLAB code is close
to ordinary mathematical expressions and it is commented so these routines should

be useful without additional documentation. These same codes will run on some

Unix machines with PRO-MATLAB (a Unix version of MATLAB). The Unix hosts
(e.g. Sun 3) are much faster than the PC.

To use this software, load all the ".m" files in some directory where PC-MATLAB

will run. Then, run "matlab" at the operating system prompt. Then, command
either "design" or "analyze" at the MATLAB prompt ">>". Finally, answer the
questions (following each answer with a RETURN).

To run your own examples, use buildtla. m or builddin,.a as a guide to cre-

ate a new buildxxx.w file for the system you want to investigate. Name your file

buildtla. a or builddin. a and run as before. Alternatively, use a new name for

your buildux. a file and patch the routinesw analyze. a, design, v4 and var.opt2. s
(zxutheta) to use your file instead of builddin. a or buildtla.aL

The subroutines are arranged in three groups:

"" Utility Subroutines (may be called by analysis or design routines)

"* Analysis Subroutines

S" Design Subroutines

S111

S0
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E.1 Utility Routines

E.1.1 Build Two-Link Arm System: buildtla.m

function EAB,DS,seqptr,Theta,varptr,wO,O 0,BTP,keyseq)=buildtla

% Buildtla loads the initial system description for Berg's two link-arm
% plant/controller. Final data from Berg's Case I is used.2
% Figure and table numbers refer to Berg's Thesis.

2%2--------------------------------------------------------------

% The states are: x(i): hub angle, theta (see fig 6.1)
% x(2): hub angle rate, theta dot
% x(3): tip position, delta

*% x z4): tip speed, delta dot
% x(5): sample & hold 1 (hi) (see fig 6.2)
% x(6): sample & hold 2 (h2)

Sx(7): sample 4 hold 3 (h3)
% x(8): slow discrete control state, cl
2' x(9): fast discrete control state, c22
% --------------------------------------------------------------

2 Set sampling times (ref table 6.3)

fprintf (' \nLoading two link arm plant/controller. \n');

keysequl; % the sequence that is the basis of the DPT
STP-1/35.556; % short time period (synchronous)
LTPu-*STP; % long time period
%STPaLTP/(2epi); 2 short time period (asynchronous)
BTP*LTP; % basic time period

2 --------------------------------------------------------------------- aaaaaaaaaaaaaaaaa

2 'seqptrI is an array that defines the sampling saquences. Seqptr has
% a row for each synchronous sample sequence. Each entry in a row
% represents a continuous-time or discrete-time state transition.
% Positive entries represent continuous transitions for that duration.
% Negative integers indicate discrete-time transitions described by the
% corresponding block of DS (i.e. -1 and -2 for this problem). A zero
% (which may be required to fill the rectangular array) represents no
% transition. The first element in a row is the first element in the
% sequence (chronological) which must indicate a discrete transition.
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% The period of any sequence is the sum of the non-negative elements in
% the corresponding row of "seqptr".

seqptru[-I,LTP; % slow sample cycle, starts with Di, period-LTP
-2,STP]; % fast sample cycle, starts with D2, period=STP

-----------------------------------------------------------------

7,. Theta is a vector of the variable parameters. These elements
% must be the same as their definitions in varptr. (ref table 6.5)

Theta-[-0.48499; % -(alpha-i)
11.297; % beta-li

0.39316; % beta-12
-13.483; % gamma-i1

1.0708; % gamma-12
-0.55327; % -(alpha-2)

* 0.097632; % beta-21
13.439; % beta-22

-0.12129; % gamma-21
-16.866 ]; % gamma-22

% ------------------------------------------------------------

m "varptr" is an array that defines each of the variables in "Theta".
% Each "varptr" row contains (type, row, column) where:
% type a 0 denotes the AB matrix
% type a j (j w positive integer) denotes the j'th block of DS.
% The i th row of "vaiptr" corresponds to the i'th variable in "Theta"
% which belongs in (roe,column) of the indicated matrix.

varptro[ 1,8,8; % alpha-I
1,5,1; % beta-11
1,5,3; % beta-12
1,6.8; % gamma-11
1,5,9; % gamma-12
2,9,9; % alpha-2
1,6,1; % beta-21
2.7,3; 2 beta-22
1,6,8; % gamma-21
2,7,9J; 2 gamma-22

%-------------------------------------------------------------------------

2 AB is a concatination of the usual, continuous-time +A and -B
% matrices (ABO[A.-B]), where idot a A x * B u) which in zero-filled

"" 2 for squareness. Negative feedback is achieved by negatin, the B

S
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X matrix. All sample-and-hold states are considered to be inputs so B
% has a column for each hold state and these columns are sequenced like
7. the sample-and-hold states. An all-zero column indicates the
% corresponding hold state doesn't drive the continuous states. If
X the output of two holds is summed to drive a physical input, B will
% have duplicate columns. This approach allows the continuous state
% transition matrix for time "t" (with no discrete events during t)
% to be computed as:

%. Psi(t)- [expm(AB*t), 0; 0, eye(nxd))

%. where nxd a number of purely discrete-time states.x
% In seqptr, AB (a continuous-time transition) is indicated by a
%. positive entry.
%. In varptr, AB elements are indicated by a zero in column 1.x

AB= [0, 1, 0, 0, 0, 0, 0; % ref eq 6.4-6.10
0, 0, 0, 0, -(2.3684)$ -(-22.934), -(-22.934); % and table 6.1
0 0, 0. 1, 0, 0, 0;
0, 0, 0, 0, -(-1.1428). -(121.59), -(121.69); z
.O, 0 ,0 0, 0, 0, O % zero fill row
0, 00 0, 0, 0, 0, 0; % zero fill row
0, 01 0, 0, 0, 0, 03; % zero fill row

% a---------------------------a--------------------------a---------------------am

f 'IDS" is a concatination of all the discrete and sample state
% transition matrices (i.e. DSu[dl,d2,...lss1,...]) in any order. For
% the TLA problem, dl is the slow discrete transition and d2 is the
% fast state transition. The fixed elements are loaded now. Update is
X called later (by "check") to load the variable elements (Theta) into
% DS and A&.

DSUw[eye(9) eye(9)];
DS(56,)-O; DS(6,6)-O; DS(8,8)no; DS(8,1)-1;
DS(7,16)uO; DS(9,18),0; DS(9,12)"1;

% ---------------------------------- flll----------------------

* Define cost weighting parameters for optimization

% state error veighting coefticients for cost function

vO"[21 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1860 0 0 0 0 0 0

S . . . . . . e
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0o 0 0 0 0 0 0 0
o 0 0 0 1 0 0 0 0
0 0 0 0 0 69.44 69.44 0 0
0 0 0 0 0 69.44 69.44 0 0
o o 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0];

% process noise covaraence (future use)

xO=[0 0 0 0 0 0 0 0 0
0 915.48 0 -2976.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 -2976.4 0 14874.1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

*0 0 0 0 0 0 0 0 0)

% special code to check sensitivity to semi-definite XO & WO
%vO=wO+1*eye(VO);
%xOxO+1*eye (vO);
% end of special test code

%------------------------------------------------------------------------

fprintf(' Load complete. Berg case I data used.\Mnan);
return

% end of the buildtla function $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.1.2 Build Double Integrator System: builddin.m
function CAB,DSseqptr,Thetavarptr,vOgO, BTP,keyseq] builddin

% Builddin loads initial system description for the double integrator
% plant/controller. e,***e fourth-order version Cee*e,

% ----------------------------------- f n ----------

% The states are: ,(1): first integrator output
% x(2): second integrator output

x(3): sample and hold output (proportional)
% z(4): sample and hold output (rate)

m2
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fprintf('\nLoading for 4th order double integrator/controller.\n');

S----------------------------------------------------------

keysequi; % the sequence that is the basis of the BPT
?.keyseq=2; % the sequence that is the basis of the BPT

STP=-.0; % first time period
.STP.I.i; % first time period

%LTP-I.O; % other time period
%LTP-i.1; % other time period
LTPu.9; % other time period

%BTP-STP; % basic time period
%BTPwLTP; % basic time period
BTP=9; % basic time period

% -----------------------------------------------------------------
, Theta is a vector of the variable parameters. The order of these
% elements must be the same an their definitions in varptr.

Thetam[O.6; 2 4(cd) % so-callkid nominal gains
0.5; % +(c2)
2.0); % +(c3)

% Thetao[I.121; % +(ci) % optimal asynchronous gains
% 0.499; % +(c2)
% 1.628]; % +(c3)

% ThetanEO.666; % +(cl) % optimal synchronous gains
% 0.116; % +(c2)
% 1.025]; % +(c3)

%2---------------------fl eeeeeeeee-----------------ee------------------------..

"% "seqptr" is an array that defines the sampling sequences. Seqptr has
% a row for each synchronous sample sequence. Each entry in a row
% represents a continuous-time or discrete-tim state transition.
% Positive entries represent continuous transitions for that duration.
2 Negative integers indicate discrete-time transitions described by the
% corresponding block of DS (i.e. -1 and -2 for this problem). A zero
% (which may be required to fill the rectangular array) represents no
% 2 transition. The first element in a row is the first element in the
2 sequence (chronological) which must indicate a discrete transition.
2 The period of any sequence is the sun of the non-negative, elements in
% the corresponding row of "seqptr".

aeqptra (-1 .STP,0; % proportional feedback event
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-2,-3,LTP]; % rate feedback event

%2-----------------------------------------------------------------

2 "varptr" is an array that defines each of the variables in "Theta".
% Each "varptr" row contains (type, row, column) where:
% type n 0 denotes the AB matrix
% type a j (j - positive integer) denotes the j'th block of DS.
2 The i'th row of "varptr" corresponds to the i'th variable in "Theta"
% which belongs in (row.column) of the indicated matrix.

varptr-[ 1,3,2; % cl
2,4,2; % c2
3,4,4 1; % c3

%2---------------------------------------------------------------2
* 2 AB is a concatination of the usual, continuous-time +A and -B

% matrices (AB-CA.-B], where xdot a A X + B u) which is zero-filled for
% squareness. Negative feedback is achieved by negating the B matrix.
% All sample-and-hold states are considered to be inputs so B has a
2 column for each hold state and these columns are sequenced like the
2 sample-and-hold states. An all-zero column indicates the
2 corresponding hold state doesn't drive the continuous states. If
2 the output of two holds is summed to drive a physical input, B will
% have duplicate columns. This approach allows the continuous state
% transition matrix for time "t" (with no discrete events during t) to
% be computed as:
2

% Psi(t)u [expm(ABet). 0; 0. eye(nzd)]

% where nxd w number of purely discrete-time states.

% In seqptr, AB (a continuous-time transition) is indicated by a
% positive entry.
% 2 In varptr, AB elements are indicated by a zero in column 1.

AB. 0, O, -1, -1,
1i 0 0, O,
o 00, o0 0,
1 00, 0. 0 3;

-------------------------------------------------------------------------

2 "DS" is a concatination of all the discrete and sample state
% transition matrices (i.e. DS,,dl.d2,....sisl,...j) in any order.
% For the DINT problem. position feedback discrete state transition and
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% d2 is the rate feedback state transition. The fixed elements are
% loaded now. Update is called later to load the variable elements
% (theta) into DS and AB.

DS- [eye (4) eye (4) eye (4));
DS(3,1:4)=[0 1 0 0); % DS(3,1:4)u [0 cl 0 0) after update
DS(4,S:8)u[O 1 -i 0); % DS(4,5:8)- [0 c2 -i 0) after update
DS(4,9:12)=[0 0 0 -1); % DS(4,9:12)= [0 0 0 c3J after update

% --------------------------------------------------------------

% Define cost weighting parameters for optimization

% state error weighting coefficients for cost function

vO i 0 0 0
0 1 0 0

00 0 0.1. 0
0 0 0 0.1.);

% process noise covarience

xM-[O 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 0.1) ;

------ ---------------------------------------------------

fprintf(' Load complete. \n\n')*;
return

% and of the builddin function $$$$$$$$8555555555555555$5555555555555555

E.1.3 Check Dimensional Consistency: check.m
function conateucheck(AB,DS,aeqptrthetavarptrVxOBTP,keyseq);

fprintfQ(Chscking dimnsional consistency sad computing [const]. \n');

% • 'consts' is used by mest other functions.
% 'consts, = tnx.n c.nxs,nD$,nvar,nvarcDnseq,seqlenkeyesq,BTP,
% fauteq, trainlen. speriod]
% vhere:
% 1. nx total number of states
% 2. nxc number of continuous states (A is nxc by nxc)

3. nxu number of sample and hold stat" (B is nxc by an)

0
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%. 4. nDS number of blocks in DS
%. S. nvar - number of variable parameters
S6. nvarc - number of continuous (i.e. in AB) variable parameters
% 7. nseq a number of sample sequences
% 8. seqlen - length of longest sequence
% 9. keyseq a index of sequence synchronous with BTP
% 10. BTP - basic time period
% it. fastseq - index to shortest sequence
% 12. trainlen a length of shorter train
% 13. speriod = period of shortest sequence
%. Also: nxd a number of discrete states (nx - nxc + nxs + nxd)
% ABwide a nxc+nxs
% DSwide m nxs+nxd
% phirow = block index to last row (phi's) in pc.phi arrray

% m is a dummy variable
consatszeros(1, 13);
[consts(1) ,m]-size(DS);
consts (4) -fix (m/consts (1));

if rem(m,consts(1)), errusg('ERROR, extra/missing DS columns.'); end;
(m,ABwide]Qsize(AB);

if m'oABwide, errmag('DATA ERROR, AB matrix isnt square.'); end;
consts(2)=max(find(any(AB')));
consta (3) -ABwide-conste (2);
Cconsts (5) ,m]-siz.(varptr);

if muw3, errmag(IDATA ERROR, varptr does not have 3 columns.'); end;
if consts(5)'ulength(theta), errmsg(QERR, theta varptr mismatch.') ;end;

constu(6)usum((varptr(: ,i)nuO));
"Econsts (7),consts (8)3 -size (seqptr);

if consts(8)c2, orrmsg('ERROR, longest sequence has 1 event.'); end;

V. check "varptr" consistency
for i-m:consts(6).

if varptr(i,1)<O, ermsg('DATA ERROR, varptr(i,1) is negative.'); end;
select-abs (varptr(i, 1));
if select>consts(4), erxusg('ERROR, varptr(i,1) > DS size.); end;
if rem(select,1)mO, errmasg(ERROR, varptr(i,t) not integer.9); end;
rovuvarptr(i,2); coluvarptr(i,3);
if rowlI, errmsg(IDATA ERROR, varptr(i.2) 0-0.'); end;
if col<l, *rmag('DATA ERROR, varptr(i,3) -0O.'); end;
if selecta-O,

if row>consts(2), orrmag('DATA, varptr(i,2) exceeds AB size.'); end;
if col)ABwide, orrimg('DATA, varptr(i,3) exceeds AB sizeo'); end;

lseo,
it rovoconsts(1), errmsg('DATA, varptr(i,2) exceeds DS size.'); end;
if coconstu(1)econts(4), e*rmsg('varptr(i,3) exceeds DS.');end;
end; % end if selectu-O-else

Send; % end for-loop
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consts(9)=keyseq; % sequence synched with BTP
consts(1O)=BTP; % BTP

% compute data for train calculations
etimes-seqptr.*(seqptr>O); % elapsed time increments
periodsusum(etimes'); % periods of sequences (row)
[consts(13),consts(11)]=min(periods); % shortest period
etimes(consts(ii),:)=zeros(1,consts(8));% zero-out short sequence
bigno=max(max(etimes)); % largest element
etimesmetimes+bigno*(etimes-u0); X set all the zeros to bigno
et-min(min(etimes)); % shortest etime in slower sequences
consts(12)=fix(min(et/conuts(13))-i); % minimum cycles in train
consts(12)=max([1 consts(12)1); % avoid zero length train
consts(12)-consts(12)*consts(13); % minimum train length (time)

fprintf(' Check complete.\n\n');

% end of procedure check $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E..4 Install Gains in System: update.m
function 1AB, DS) m update(ABDSvarsovarptr.consts);

% This function updates the AB and DS matrices to reflect the 'neo'
% parameters in 'vars'. Also, if AB is changed, reast is set to one;
% otherwise it is zero.

nxuconots(1); % total number of states
nvar-consts(6); % number of variable parameters

for i-l:nvar,
select-abs(varptr(i,1));
rovevarptr(i,2); col-varptr(i,3);

.O if select--O,
••it AB(rovcol)'-vars(i). AB(rov,col)-vars(i); end;

else,
DS(rovw((select-1)*ni+col))-vars(i);

end; % end if-else
end; % end for-loop

% end of update function $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.1.5 Find Phase of T Discontinuities: cases.m
Sfunction Ectimes] casese(flag.DSsoeqptr,conats);
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% This function computes the phase delay time boundaries which partition
% the sample schedule offset (tau) into regions of continuous Psi(tau).
% If flag=O the continuity of the current Psi(k.tau) is considered. If
% flagrl, the continuity of Psi(k-i,tau) of the following BTP is
% considered too.
% 'ctimes'=[O] if nseql. ctimes=[O tau-max] if otherwise synchronous.

%* This version is limited to nsequi or 2. **

fprintf('Finding all continuous regions ... 1);

"nxwconsts(a); % total number of states
nseqvconsts(7); % number of sample sequences
seqlenaconsts(8); % length of longest sequence

- keyseqqconsts(9); % Index to sequence synchronous with BTP
SBTPconsts(1O); % basic time period
tolat.Qe-iO; % tolerence for same event times

S varseq-3-keysaq; % index to async sequence (keyseq-1 -> varseq-2)

if (flagol)A(flag-O). errzsg('flag out of range in cuee.'); end;
if nsequai; ctimseu[O]; return; end; X single sequence case
if nseq)2, errmsW('EECUTION ERROR, More than 2 sequences.); end;
if keyseq)2, errs•(g.EXECUTION ERROR, KEYSEQ mre than 2. 0); end;
if keyseqC1. errmsgQ(IEXECUTION ERROR, XEYEQ -ls thaU 1•.*'); end;

etimese(eseptr .0 (seqptzoo));- *16elaed tims intervdal
periodueum(etimoa'); % periods of sequeoces

cycle (koyseq)-fix(BTP/period(keyneq));
if reu(BTP,period(keyseq))*O. eorrmgQ('Key Sequence is Asynu.'); end;

cycles(varseq)-fix(BTPiperiod(varseq)); % max 0 full .Cycles in BTP
_ seqre*-rem(BTP.period(varseq)): % romainder

% canes vith different nuabers of full cycles in BTP
• .i ctii (O]; K starting points (sin tsu)
%if ueqre*sO, return; end; % all sequences synchronous
ctimesm-ctiuasseqrel; % current BTP looses I cycle

- if flaguI-; % previous -IP gains one cycle
teump'srem(2.seqrea,period(varseq));
ctimesu-ctiestemspj;

end;
ctimses[•times.period(virseeq)J; % end point (*aax tau)

*1 K, cases where discrete transitions don't• coaUte
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% Test all cases where:
% il*period(keyseq)+etimes (keyseq,j 1) -
% i2*period(varseq)+etimes(varseq,j2)+tau < BTP

% where: il,i2,ji,j2 = non-negative integers & 0 < tau < period(varseq).

lim.kl-O; lim.ku-fix((flag+l) *BTP/period(keyseq));
lim.vl-O; lim.vuufix((flag*1)*BTP/period(varseq));

for il--lim.kl:lim.ku, % full periods of keyseq
tkmil*period(keyseq); % time for full periods
for jIu1:seqlen, % part periods of keyseq

if etimes(keyseq, j)>*O, % test for continuous
tkutk+etimes(keyseq,jI); % event time
if (tk>O)&(tk<(flag4l)*BTP); % event in BTP range

for i2slim.vl:lim.vu, % full varseq periods
tvai2*period(varseq); % time for full periods
.for J2=1:seqlon, % part varseq periods

it eotimos(varseqJ2)>*O, % test for continuous
tvatv+ettmes(varseqJ2); % event tim w/o offset
if (tv>O)k(tvctk); % event in BTP * tau>O
if (tk-tv) < pariod(varsoq). % if offset < period

% chock for discrete, non-commuting transitions
apindx(keyaeq)jlI; spindx(varseq)*j2;
spind* (kryseq)uspindx(keyesq) 1;
spindx(varseq)u spin4'(varseq).I;
spindz-spindz- (spitidz~seq1.n) eseqlen;.

koytypeu--eqptr(koyasqspindx(keysoq));
i ~vartypee-se.ptr (varaaoq,spinza(va~xseq) );

"if koytyp)O, % synth event discrete
if vartypeOQ. asynch event discrete• ~~~teapi)tnSC( :, ( +(key~ype- 1) .oz) (keytypsenz))o...

03(, (1,,,(va.rtyps - ).x)en ; (rare ype~ez) ),
*te•2-OS (; .,(1" (var."ype- 1)ez) : (vezitypee&&z))e•....

.... D,~S ( :, (:1.,,(keytype-, !)*z) : (keytylpeen));

itf any (saty(tmp1,- tou2) ).

* ~ctimea[CtiMsa,(tk-tV)j;- end; nou tomiiting
end; end;

% check coaplet., ctimass et it -diaroet .- •wu-coftut4i

end; end: end; sad; #ad; tad; end, eW; e&W; *edlall t We a tot,#

Spatch hers to force an additional roegion(.)
% ctiaosufctilm. 36 .445 $3
% ond of apecial patch
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ctimesfsort(ctimes); % sort sequentially
ctimes=ctimes.*(ctimes>O); % remove negative times
casesulength(ctimes)-1;
uniq-[1,((ctimes(2:cases+1)-ctimes(i:cases))>tol)];
ctimes-ctimes(uniq); % eliminate duplicates

fprintf ('\n')
% end of function cases $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.1.6 Display Time and Date: shotime.m

function chotime(clock)

%. Display time and date on screen in standard format

fprintf('\n');
fprintf(int2str(clock(4)));
fprintf(':');
fprintf(int2str(clock(5)));
fprintf(':');
fprintf(num2str(clock(6)));
fprintf()

tprintf(int2str(clock(2)));
fprintf('/');
fprintf(int2otr(clock(3)));

* ~fprintf ('I');
fprintf(int2str(clock(i)));S~fprintfk"\nl);

%. end of utility function shotime $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

mS.
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E.2 Analysis Routines

E.2.1 Top-level Structure
.--------..

I ANALYZE I
+---------+

4-------------+----------+----------4

I I I I
+----------+ .-------- + .---------+ -------

I BUILDTLA I I CHECK I I UPDATE I I MRAS I
I BUILDDIN I .-------4. +---------. +------4.

.----------- -----I I

I CASES I I PSIX I
+4 .-------.. .-------.

E.2.2 User Interface: analyze.m

% DRIVER SCRIPT FOR NULTIRATE ASYNCHRONOUS STABILITY ANALYSIS

shotime(clock); • time hack to estimate compute time

This block creates the plant and cost function
% description matrices. Replace this block vith code,
% input statements, and/or function calls that will create
% • AB, DS,ssqptr,theta,varptrW,xOBTP,and keyseq for
Sthe system you want to analyze.

% LOAD PLANT k INITIAL CONTROLLER MODELS.
aselainput(QSelect system: 1 "0 tia, 2 -0 dint: 1);
if sealwal,

CAB,ODS,seqptr,thetawvarptrW,,O.BTPkeysee3]buildtla;
else,
if ssel-w2;

- ( lABDS .seqptr,theta.varptr,V,xO,BTP.keyseq] builddin;

fprintf0'\u Unknown system type ...abort run. \n));
end;

end;

% SELECT INITIAL GAINS (thoita)
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tseluinput('Select initial theta; 1=>last run, 2->loaded values: ');
if tsel--i, % load last saved theta vector

if ssel-ml, load tlatheta.mat, else,
if sselu-2, load dintheta.mat, end; end;

end;

% VERIFY DIMENSIONS AND COMPUTE [consts]
consts=check(AB,DS,seqptr,theta,varptr,W,xO,BTP,keyseq);
consts(15)-.5; % assume stable with initial gains

% INSTALL THETA VALUES IN AB AND DS MATRICIES
[AB, DS] a update(ABDSthetavarptrconsts);

% DISPLAY INITIAL GAINS
fprintf('\nTheta a Y.2.3g' ,theta(1));

* •for jp-2:consts(5) fprintf(I %0.3f',theta(jp)); end;
fprintf('\n\n');

% ****. CALL MULTI-RATE ASYNCH STABILITY EVAL ROUTINE *******

shotime(clock); % time hack to estimate compute time
fprintf('Compiling asynchronous stability test code: ');

-tabilityumraa(ABDSseqptrconats);

tprintf(I The average stability figure is: %g'.stability);

% The resulting stability figure is analogous to the real part
% of a continuous-time pole. 1'stability'"O implies the system
% is stable with the error state decay rates bounded above
_ (on average) by exp(stabilityet).

_%:_.eeee**e** END OF EVALUATION CALCULATIONS **********

shotime(clock); % time hack to estimate compute time

2 end of main program $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

fi E.2.3 Main Program: mras.m
function stabilityum s..sevalu(AB,DSseqptr,conats);

2 Evaluates multi-rate asynchronous stability. 'stability' is
% analogous to an upper bound on the real part of the poles of
"2 a linear, time-invariant continuous-time syste .

rW V
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%** This version is limited to nseqn2 **

fprintf(' Compile complete.\n');

% ********************** SET CONSTANTS *************************
nxfconsts(1); % number of states
nxc-consts(2); % number of continuous states
nxsaconsts(3); % number of sample k hold states
nseqconsts(7); % number of sequences
seqlen-consts(8); % maximum sequence length
keyseq-consts(9); % Index to sequence synchronous with BTP
BTPuconsts(1O); % basic time period
fastseq-consts(ii); % fast sequence number
trainlen-consts(12); % length of shorter train
speriodaconsts(13); % period of shortest sequence

* varseqV3-keyseq; % Index to sequence with variable phase
ABvideanxc+nxs;
cyclesuround(trainlen/speriod);

tol-0.01; % tolerence for integral convergence
maxstepu.1*speriod; % maximum integration step size
minsatepu.O1*speriod; % minimum integration step size

* 2 *..*********e.*s*** *** SET ARRAY INDICES *********** ******
colsni:nx; offcols-cols-nx;

-- A phirows-l:nxc; phicolsul:ABvide;
DSrowsunxc+l:nx;

2 ********************** COMPUTE TRAIN STH's ****************
colselu-soooetr(fastseqi)enx~otfcol.; 2 DS cola for end events
Poi-DS(:.colsel); % initial Psi
for j-2:seqlen;

isp--seqptr(fastseq.j); % event identifier
0 it isp>O, % discrete transitiom

Psi(DSrov.:t)=DS(DSrows,of cols+isp*nx)ePsu;
else, % isp must be 4 0 % continuous time transition

phi--upm(-Ae*isp); % continuous 5TN (ispu-t)
Psi(phirovs,:))phi(phirovs,:)*Psi(phicols.:);

end; % it isp>O ... else ...
end; % for j-2:seqlen 2 no more discrete in speriod
trainsmPsaVcycles; 2 Extend to 'cycles' periods
trains-[trains Psi*trains]; % Extend to 'cycles+1' periods
trains(D3rovs,:)uDS(DSro"s.colael)*trains; % Final discrete event

2 *.*e*es*** ... eee*e*e** INTEGRATIONS *** * .e*** *** *********

.0......
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brktimesfcases (1, DS,seqptr, consts);
nzonesslength(brktimes) -I;
phasing-zeros (nseq, 1);
varseq=3-keyseq; % index to slipping sequence
etsuseqptr(varseq.:); % pointer row for slipping sequence
vperiodfsum(ets.*(ets>O)); % period of slipping sequence
slip-rem(BTP,vperiod); % phase decrease in next BTP
plottm [; plotSR 0]; plotSIG []; % clear plot data arrays
IInSR=O; IlnSIG-O; stab-O; % initialize log integrals to zero
%fprintf('Slipfif\n',slip);
% phasing(varseq) -NextTau+vperiod* ((NextTau<O) - (NextTau>vperiod));

for zoneni:nzones; % step through zones
tau-[]; LSRJ[]; LSIG=O; % null out data vectors
tsabrktimes(zone);
tefbrktimes (zone+ 1);
tau(i)a=(te•ts)/2;

- fullspanute-ts; % tau range of interval
spanffullspan; % Euler integration step size
oldpoints=O; % no. previous data
nevpointsol; % start with 1 Euler point
zstab=O; % initialize zone stability figure
goodsO; % assume integral not converged

fprintf('\nZone Start Taua~f. Zone End Taus %f\n',ts,te);

while goodsmO, % repeat until integral converges
Ufprintf ( oldpointsm. .Of, nevpointe 2. Of' ,oldpoints .newpoints);
%fprintf(', tau ranges %g, integ stopsg.\n',fullspan,span);

nevindzn(oldpointsul):nevpoints; % indices to new points
for inewindx, % compute data at newpoints

phasing(varseq),tau(i); % phase for current BTP
tThisPL,ThisSRjpapix(phasing,AB,DS,seqptr,consts,traines,..

colaoffcolephirova,phicols.DSrows *);

LSR(i)-log(ThisSR) ;
NextTau•tau(i)-slip; % phase of next BTP
phasing(varseq)uNoxtTau~vperiod, ((NextTaucO) -(NoxtTau~vporiod));

tNextLPlj]psix(phauingAB,DSseqptr,conats,trains,cols,...
offcola, phirows, phicola, DSro, .2);

LSIO(i)ulog(norm(NoxtLPIeThisPL));
%fprintf('stepw2.Of, phasing-flg, LSR-%g'j, ,tau(i) ,LSR(i));

. 2{fprintf(C, LSIG,,g,\n',LSIG(i));
end; 2 for isnevindx

% add nev data to plot vectors

plott- [plott; tau(nsvindx)J;
plotSRv plotSa; LSR(nevindx) •];
plotSIGu plotSIG;LSIG(nevindi) I];

S
(
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Ssave mrasdat plott plotSR plotSIG % comment out for clean output
shg
plot (plott, plotSR, ' x' plott, plotSIG, 'o');

% compute/compare integrals
ILSR=span*sum(LSR);
ILSIG=span*sum(LSIG);
oldzstab=zstab;
zstab=ILSRtILSIG;
error-abs( (zstab-oldzstab)/zstab);

%fprintf(' Integral ln(SR)-.g, Integral ln(SIG)uY.g\n',ILSR,ILSIG);
%fprintf(' Zone Stab(N/O/C)f%.4g/1%.4g/%.4g.\n',zstaboldzstab,error);

if spancminstep, goods-i; end; % convergence failure
if (error<tol)k(span<maxstep),

goodul;
else, % if (abs(...

span-span/3; X cut integration step size by 3
oldpointsunewpoints; % remember old number of points
newpointsu3*oldpoints; % set new number of points
tau=[tau;tau-span;tau+span]; % ew phase time vector

end; % if (abs(... )) else
end; % vhile gooduaO

I.-InSRu-IlnSR+ILSR;
I.lnSIG-I.1nSIG+ILSIG;
stab-stab+zetab;tprintf('Zones 1-%.Of: I.ln(SRa) %,3g',zone,I~lnSR);
fprintf(', I.ln(SIG) a '".3g, Stabs %.3g. \n',I.lnSIG,stab);

end; % for zonel:nzones
save mrandat plott plotSR plotSIG
stabilityu(stab/(brktieas(nzonas~i)-brktimeu(i)))/BTP;
return;

% end of function ma sSSSSSSSSSSSSSSSSSSSSeSSSSSSSSSSSSSSSSSSSSSSS

E.2.4 STM Calculation: psix.m
function [PoutSR]-,..
psix(t2go,AB,DS,sptrcon, trains,cols,offcols,phirovsphicolsDSrous, slag);

% state transition matrix/factors for mras.m

* tOt2go;
nz-con(1); nxc-cou(2); nxs-con(3);
nvarcon(5); nvarc-con(6); noeq-con(7);
seqlon-con(8); DTP-con(1O); taetseq=con(1i);
trainlencon(12); speriodscon(13); ABvidednzc+nxs;

-SI - .- . . . . .. I .1 1 P
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"% PART i: COMPUTE STM FOR BASIC TIME PERIOD

S.----------------- Set Pointers for Initial Discrete Events------------
S% t2go(i) will be the time from BTP start to the first discrete
% event for each sequence. 'sptr(i,sptndx(i))' defines the event.
done=i; spindx-ones(t2go)*seqlen; laststepszeros(t2go);
while done>O; % -.ompletion flag

for ini:nseq,laststep(i)-sptr(i,spindx(i));end; % index to last event
laststepulaststep.*(laststep>O); % mask discrete events
backstepa(laststep<t2go); % boolsan
donefsum(backstep); % 0 if done
t2gont2go-backstep.*laststep; % adj'ist t2go
t2go=t2go.*(t2go>O); % eliminate any negative times
spindx-spindx-backstep; % adjust index
spindxuspindx+seqlen*(spindx<i); % fix possible wrap-around

*- end; % while done>O
spindx-spindx+1; % jet to current event
spindxuspindx-(spindx>seqlen)*soqlen; % fix wrap-around

S.---------------- Compute Psi, the STH for specified t2go.---------------

% INITIALIZE
zerotolaeps*BTP;
done=l; elaptime=O; % time into BTP
[tl,il]=min(t2go); % time to first event
ispe-sptr(il,spindx(il)); % identify first eta

Psi-eye(nz); % initialize Psi
% QUICKIE IITIAL DISCRETE EVENT IF PRACTICAL
if iop>O, % first event discrete

blksel-isp*nx*offcolsu;
PsiwDS(:,bJksel);'

' spintdx(il)&spiudJ*(i1)÷*;
0 end; % if isp>O

% MAiN STATE TRANSITION MATRIX (atm) CALCULATION LOOP
while done>O, % main Psi loop

if (alaptime•'l~zerotol)).BTPtl=BTP-elaptimo;done.O; end; % last step
spintx-spindx-(spindz>s.eqlen)*esqlen; 2 fix any vrap-around
if •1<-0, % tlmO m>do next event now

v .i.u-sort(t2gol; % find next event time too
t42ust(2); - time to second event
if (il,,fastueq)a(t2>-trainlen)&(spindx(il)mm1)b...

((trainlen~elaptirse)<BTP), % next event is a train
% TRAIN EVENT

colstl-cols; dt-trainlen; % use short train indices
O if (C2bu(dtosporiod))&((dt~elaptimosporiod)(BTP), % k cyclesIý( M0 a11 1 %U MWI
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colsel-colsel+nx; dt=dt+speriod; % use long train indices
end;
stm=trains (:, colsel);
Psi=stm*Psi;
t2gont2go-dt;
"elaptime-elaptime+dt;
t2go(il)-ti;

else, % next event NOT A TRAIN EVENT
ispa-sptr(ii, spindx(ii)); % event identifier

if isp>O, % isp points to DS block
% DISCRETE EVENT

blksel=isp*nx+offcola;
stm=DS (DSrows ,blksel);
Psi (DSrows,: )=stm*Psi;

else, % isp must be < 0 % i.e. continuous segment
t2go(ii)=t2go(il)-isp; % increase that t2go element

end; %if isp>O ... else ...
0 end; % if (ii-ofastseq ... else

spindx(i1)-spindx(il)0+; % increment sequence index
else, % if (ti<u 0) i.e. tl>0 a> time passes, continuous segment

% CONTINUOUS TRANSITION
phiuexpm(AB*tl);
Psi (phirows, : )aphi (phirovs, : )*Psi(phicola, :) ;

--- • elaptimewelaptime~tl;
t2gost2go-ti;

end; % if ti I-0 ... else ...
ttl,illamin(t2go); % next event & its sequence

end; % while elaptime~tl<BTP % no more discretes in BTP

%,%****seeeese***eee eEnd of Psi Calculation****e**e*,**e**e*

% PART 2. COMPUTE BALANCED FACTORS FOR STABILITY TEST
% eflagaul -- > factors for "cuzrent" BPT (lambda 4 delta)
% flagun2 -- > factors for "next" BTP (delta only)

[P LJ'eig(Psi);
Plainv(P);
L-diag(L);
SR-norm(L,inf);
L-sqrt(L/SR);

for iul:nx
p-P(: .i); sponorm(p);
pinv-PI (i, : ); npionors(paln) ;
bal-sqrt(npi/np);
if fliag-*2, Pout(i,:)-pinv*L(i)/bal;

else, Pout(:,)'p*L(i)W*bal; end;
end; % for i=1:nz
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return;

% end of function psix $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

0- -

0

H0

- --
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E.3 Design Routines

E.3.1 Top-level Structure
*----------.

I DESIGN I
.---------. 4

+-----------4------------4----------------+

I I I* I
------------ .-------- 4. 4.---------4. 4. -------- 4.

I BUILDTLA I CHECK I I UPDATE I I VAR.OPT2 I
I BUILDDIN I .-------- 4. ---------. .+ ...........- 4.

------ ------ ------

4.-----------4--------------4-----------------
* I I I I

.......-- 4. 4.-------..... ÷÷.---------. ÷ 4÷.-----------4.

I CASES I I ACSTGRD2 I I UPDATE I I LINSRCH2 I
.-------. .------------. . 4.----------4. .------------. .

I I
.-------------4.--------------4. .--------... .

- - -I ! I II
i--------.....4.-----------.. 4..-----------4. 4---------4 ..----------.

TRAINS2 ! i PSI2PLUS I I CSTGRD2 I I ACST2 I I UPDATE I
4.--------.-..4.------------4. 4.-----------.. 4 -eeeeeee.. 4.-------.. .

I
4. .... o.4...

I I
4.-------4-- --......ee4.

I PS12 I I CSTORD2 I

SE.3.2 User Interface: design.m
% Driver script for constrained asynchronous design algorithm

shotime(clock); % time hack to estimate speed

*0 % LOAD PLANT k INITIAL CONTROLLER MODELS.
useelwinput('Selct systes: I wo tie, 2 u• dint: 1);
it .seltul,

[AB, DS.seqptrthetavarptr.VzOBTP,keyseq-ubuildtla;
else,

if suel-w2;
(ABDS.seqptrthetavarptr.V.zO.BTP.keyseq3ubuilddin;
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-- m else,

fprintf('.\n Unknown system type.. .abort run. W);
end;

end;
% VERIFY DIMENSIONS AND COMPUTE [consts]

consts-check(AB,DS,seqptr,theta,varptr,W,xO,BTP,keyseq);
consts(I.5)a.S; %assume system is stable with initial gains

X SELECT & INSTALL INITIAL GAINS (theta)
tseluinput('Select initial theta; 0O>random, iu>last run, 2u>loaded: ');
if tseluuO,

consts(15)=2; % assume unstable if rand gains
theta=rand(theta)-.5; % random gains: U(-0.5, 0.6)

end;
if tselu-l, % load saved theta vector (assume stable)

if asel-i, load tlatheta.mat, else,
if sselu-2, load dintheta.mat, end;end;

- 0end;
[AB, DS] a update(ABDS,theta,varptr,consts);

% DISPLAY INITIAL GAINS
fprintf('\nTheta - %2.3g' ,theta(i));
for jp-2:consts(5) fprintf(' %0.3f1,theta(jp)); end;S~fpri~tf (1 \n);

% ********** CALL DESIGN PROGRAM, OPTIMIZE [theta] ************

% Select synchronous/asynchronous phasing
consts(14)-input('Select, method; O->Asynch, l>Synch: ');
consts(16)u...

input('Select initial cost function; Om>Stable, lm>Unstabla: ');
shotime(clock); % time hack to estimate speed
fprintf('Comptling parameter optimization code:'); % user advisory

_ ( [theta,AB,DS]a var.opt2(AB,DSW,xO,thetavarptr,seqptrconats,ssel);

shotime(clock); % time hack to estimate speed

% end of main program listing $$$$$5$5555555$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.3.3 Main Optimization Program: var-opt2.m
function [thota,AB.DS]-...

var..opt(ABDSvO.xO, theta,varptr, seqptr,constsseael).;

% main driver for coefficient optWmization
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fprintf(' Optimization compile complete.\n')
fprintf('\nBegin parameter optimization (var-opt). \n')

% for single-sequence or synchronous cases: times-[O0
% for the two-sequence asynchronous cases: [times] partitions the
% time offset (phase) into regions of continuous 'Psi'.

nx-consts(1); % number of states
nvar-consts(5); % number of variable parameters
seqlen=consts(8); % length of longest sequence
fastseqzconsts(11); % index to shortest sequence
oldalphaale-6; % some guess to initialize step size
grad=ones(l,nvar); % allocate space
srchdirfones(rvar,i); % allocate space
alpha-O; % allocate space

* completenO; % completion flag, +1 if ok, -I if timeout
loopcountal; % counter to initialize Hessian
totalcountal; % total iteration counter
maxcount=50; % max iteration limit (timeout trigger)
tol=.OO01; % gradient convergence criteria
mincost=tol; % cost convergence criteria
nomstepa.O01; % nominal alpha guess for first search

% PARTITION OF CONTINUOUS PHASE REGIONS
[times] cases(O,DSseqptr,conats);

% FIND CONTINUOUS AND DISCRETE VARIABLES IN FASTSEQ
cvarsel-'(vxprtr(:,1)u-O); % boolean of cont. vars.
tvarselucvaroel; % boolean of all vats
for i-i:seqlen, % discrete varn. in fastaeq

tvarsealtvarsel I (varptr(:, I)u--seqtr(fastseq,O));
end;
blockucumaum(tvarsel).etvarsel-1; % block offset for partials
blocknx~block; % column offset for partials
tvarselofind(tvarsel)'; % all vars. in fastseq
cvarselnflud(cvarsel)1; % continuous Yarn (in AB)

% eeeee.*e KAIN SEARCH LOOP e
vhile completeuO,

Spfpriptf(b\nStart gradient search number ');
fprintf(int2str(totalcount)); fprintfQ.1n');
lastgrad-grad;
tcost.grad,atable] -...

acstgrd2(tiees ,wO,xO.AB,•s•eqptrvarptr, constablock,tvaraol •t,varxel);
delgrad-grad-lastgrad;
gradnormanoru(grad);
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% COMPUTE SEARCH DIRECTION
% quasi-Newton search using Broyden-Fletcher-Goldfarb-Shanno update.

% update Hessian, "G"
if loopcounto=1, %. reset Hessian to I

G=eye (nvar); nsdal; oldalphasnomstep;
else, % if loopcountu=l % compute Hessian update

G-G+lastgrad'*lastgrad/(lastgrad*srchdir)+...
delgrad' *delgrad/(alpha*delgrad*archdir);

end; % if loopcountnuu,
if min(real(eig(G)))<-eps, G-eye(nvar); end; % insure G positive def.

% compute search direction & step estimate
oldalphamoldalpha*nsd;
archdira-G\grad'; % Newtonian search direction
nsd-norm(srchdir);

* oldalphaaoldalpha/nmd; % initial step size estimate
fprintf('Coatn%6.Sg. I Gradi 1wm6.Sg. liSrchDirl 1u=6.Sg\n',cost~gradnorm,nsd)

% COMPUTE STEP (ALPHA) TO HIN COST

alpha-linarch2(srchdir,oldalpha,cost,timeswO,xO,AB,DS,theta,..,
seqptrvarptr,consts);

it alphaueps., alphanO; loopcountwO; end;
oldalphaalphaole-6; % ensure old step is positive

% UPDATE PARANETER SET

thotautheta~alpheesrchdir; % update theta
[A3,DS3-update(AB,DS,thetit,varptrconute); % update AB and DS

if ((0tabl.-1)*(consts(iS)-t))<Oo loopcountai; end;
conts (I5)-mtable;

fprintf('\nTheta a %2.3g',thota(1)-)
for jp-2:nvar fprintf(' %2.3g'.theth(Jp)); and;
fprintf('\n');

% SAVE GAINS FOR FUTU REFERENCE
if s861=01.

save tlatheta.nat theta;else#

if ssel..2, save dintheta.vat theta; and;
end;

% TEST FOR CO;9LETION/TIKEOUT
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if totalcount~maxcount, complete=-i: end;
if gradnorm<tol*cost, completeal; end;
if cost<mincost, completeil; end;

% if loopcount<3*nvar, loopcount=O; end; % arbitrary Hessian reset
loopcountaloopcount+i;
totalcountstotalcount+i;

end; % while complete-- (main search loop)

return;
% end of function min.var $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.3.4 Asynchronous Cost and Gradient: acstgrd2.m
functlon (costgrad,stablel]...
acstgrd2(brktime, wxO,OABDSeqptrvarptrconster,block,tvarsel,cvarsel);

*0- % estimate average cost f gradient over phase using polynomial curve fit

xnafen.99; % end point setback insures unique transition

I as This version is limited to nsoq-i or 2 only. *0

% OUTPr'I4 cost a pbasing-veigbted asynchronous cost function (scaler)
% grad * gradient of cost WVT thota (coltn vector)
% stable a flqa to select correct cost function it linsrch.mm
% INPUTS: brkti.. * sort*e vector of tau'u that partition regions of
% -continuous PeI(tau).
StOo,aoAB,a)S,seqptrvanrptr~consts. (see build & check)

v %.eeeeee~eseeeeoesee$$eeoeenseeens..eeeee~eneeneaoeeeeeeeeee•.seee$esse

-•esee.....eese, e STATE ThANSZTWN R&TRI1 Pa e.e, etee.seeeee

% These parameters are dofined for any time period:
I Psi - State Transitiou Katrix for the period
% PsiDot - partial of Psi wrt a variable parameter (theta elemant)

*. V w veighting: z(O)V x(O)W\integral-.period} z(t)'O x(t) dt
% Mtdot a partial V vrt a variable parameter (theta eleaent)
% I - E(z(f)(f)'} frot process noise (xW) during period (it z(O)-O)
I tdot * partial of X Wrt a variable parameter (theta element)

Y -~ E{\integralhperiod} itt)'1O z(t) dt) if z(O)"O. (scalar)
% Y-dot partial V nrt a variable pataset.r (theta eleamet)

'i

.I
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% RECURSIVE ALGORITHM FOR COMPUTING STM PARAMETERS
% Suppose: Psi(tf,tO) a T(n)*T(n-l)* ... *T(2)*T(j), where T(i) is
% the state transition matrix (stm) for the i'th segment of the BTP.
X Let Q(i),R(i), &nd S(i) represent WX, and Y, respectively, for T(i).

% Initialize:
% Psi(O)=I. PsiDot(0)=[O,0,...,0,0] These may be considered
SW(O)=O; W-dot(O)z[O,O,...,0,0] correct values for Ti=I,
% X(O)=O; Xdot(O)=[O,O,... ,0,0] a null transition with
SY(O)=O; Y-dot(O)=[O,O,. .,0,0) zero elapsed time.

% Recursions:
%. Psi(i)=T(i) *Psi (i-I),
7. PsiDot(i):T(i)*PsiDot(i-i)+T-dot.-(i)*Psi(i-I),
% W(i)=W(i-l) + Psi(i-i)'*Q(i)*Psi(i-i)
%. W.dot(i)fW.dot(i-i) + PsiDot(i-l)'*Q(i)*Psi(i-1)...
% +Psi(i-1)'*Q..dot(i)*Psi(i-1) + Psi(i-1)'*Qi*PsiDot(i-l)
% X(i)=T(i)*X(i-i)*T(i)' + R(i)
%. X-dot(i)fT.dot(i)*X(i-i)*T(i)' + T(i)*X.dot(i-l)*T(i)'...
% +T(i)*X(i-1)*T.dot(i)' + R.dot(i)
%. Y(i)=Y(i-i) + X(i-i).*Q(i)
% Y.dot(i)=Y.dot(i-i) + X.dot(i-l).*Q(i) + X(i-I).*Q.dot(i)x
% Then, Psi(n), PsiDot(n), W(n), W.dot(n), X(n), X.dot(n),
%. Y(n) and Y.dot(n) apply to the period covered by Psi.

%. **************************** TRAIN DATA *****************************

% Train concept: The fastest sampler has frequent bursts or trains of
%. k or k-i consecutive short sample periods whore:
%. katrunc(2'nd shortest sample period/shortest sample period),
X Data for these fixed STM's are precalculated and stored in 'trndat'
% to avoid subsequent reduce redundant calculations. 'trndat'

* % includes the discrete events on both ends of the fast 'sample train.'

% The precalculated trndat and cc parameters are defined as:

. QQ Wi ;W2
% RR - x1; x2
% SS Yl tiY23
STT = EPsil ; Psi2 3

% QQdot a [ Wl.dot-l ... W1.dot.-nvart
% W2.dot.i ... W2.dot.nvart 3
X RRdot w C Xi.dot-l ... Xl.dot.nvart
% X2.dot.1 ... X2.dot-.vart 3

-- S
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SSdot =EYI..dot..i . YI-.dot..nvart
%YI..dot..2 . Y2-.dot..nvart

% TT =EPsil-dot-1 ... Psil-.dot-.nvart
%Ps12-.dot-1i . Ps12-.dot-.nvartJ

% Where Psil, Wi, Xi and Yi apply to the shorter train (k-i periods),
% and Psi2, W2, X2, and Y2 apply to the longer train (k periods).
% The '..dot-.i' notation indicates the partial with respect to the i'th
%. variable (theta element) in the fast sequence (nvart such variables).

nx-consts(i); nxc-consts (2); nxs~consts (3);
nvar-cons-ts (5); nseqnconsts (7); seqlen-consts (8);
keyseqxconsts (9); varseq-3-keyseq; fastseq-consts Cii);
%# note: synch *consts(14), synchomi forcea synchronous phasing
% note: stable aconst3(iS), stable>i selecto unstable cost/grad

if (nseq<1.)I(nseq>2), errmeg('nseq out of range, acergrd'); return; end;

%~ PRECOMPUTE DATA FOR FAST SAMPLE TRAIN
(Q,RR.,SS.TTQQ~dotRRdotSSdotT7dotlu...

truins2(wQ,zOA.B.DS,eeqptr,varptr~contats,block,tvarsel,cvarsel);

stablewO;
synch - consts(14); *I f1or synch treatment
ncasaewlength(brktimes)-1;
if synch#rai, ncaseasO; end; % select synch/asynch
phasinguzeros (2.,1);

if ncaasww~O, % this is a synchronous problem

% patch here to hard-wire synchronous phase, (patch acst2 likewise)
% phasing(iOseps;
% end of patch.

fprintf C' Synch Cost &t Gradient (one c~as.).\n I);
* tEPsi,xxtuwt,yyt,Lorn,P,xxtdot~vwtdot,yytdot,LamDot,PDotJw...

po12plus(phasing,AB,DS,seq~ptr,vat-ptr~consta~zO,,vO,QQ,RP.SS,TT,....
block,tvarmel,QQdot,RRdot,SSdot,Trdot) -

atable~vaza(a&bs(Lam));
* tcostigrad3"catgrd2(uvt,xxt~yyt~Psi~coiwts.Lam,P~wvtdotoxxtdot,...

yytdot*Ls4)ot,PDot);
return;
alo i f ngaasesuon

it nsoq *2. errmag('EXECUIION ERROR, nsequw2 in~ acsrgrdl) end,
and;
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fprintf(' Asynch Cost/Grad: %2.Of',ncases);
fprintf( continuous phase regions. \n');

% compute percentages for each interval
tweights-brktimes(2:(ncases+1))-brktimes(1:ncases);
tweights-tweights/(brktimes(ncases+i)-brktimes(1));

cost-O; graduzeros(1,nvar);
t-zerop (3,1); yuzeros(3,1); g-zeros(3,nvar);
xa-i/xsafe; xcuxa*xa*xa/3;

% COMPUTE \INTEGRAL.{PHASING} COST, AND GRADIENT FOR REGIONS
for i=1:ncases,

ts-brktimes(i); te=brktimes(i+1); span-(te-ts)/2;
t(2)-(ts+te)/2; t(1)mt(2)-xsafe*span; t(3)=t(2)+xsafe*span;

for j-1:3; % get costs/grads for 3-point fit
-* phasing(varseq)-t(j);

"[Psi,xxt,vvt,yyt,Lam,P,xxtdot,vvtdot,yytdot,LamDot,PDot]=...
psi2plue(phasing,AB,DS,oeqptr,varptr,consts,xO,wO,QQ,RR,SS,TT,...

block,tvarsel,QQdot,RRdot,SSdot,TTdot);
stablesmax(tabs(Lai); stable));
Ey(j),g(J,:))ucstgrd2(wwtxxtyyt,Psi,consts,LamP,wwtdot,xztdot,...

yytdot ,LamDot ,PDot);
end; % for Jul:3

% approximate curve as: y a c x'2 + b x + a, x \in (-1.01,1.01).
% vhere asy(2); b=(y(3)-y(1))/2; c€(y(3)-2*y(2)+y(1))/2.
% Then \integral y(\tau) d\tau n c(2x'3)/3 + a(2z) with x-llxaafe.

a-y(2);
adotmg(2,:);
c-(y(3)-2*y(2)+y(1))/2;

S~cdot-(g(3,:)-2*g(2,:)÷g(1,:))/2;

include current phase region in composite cost/grad
delcostutweights(i)*(cexc+asxa);
cost-cost4delcost;
grad-grad÷tvaSghts(i)*(cdotexc+adotcxa);

tprintf(' Region '); fprintt(int2str(i));
- fprintf(' (tau ,-6. St-.6f).,',ts,te)

.priatf(' DolCostwO.Sf. Cost$ $$6.6f.55'5d5lco5tcost)
end; % for im1:ncases

return
% end of function actgd $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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E.3.5 Asynchronous Cost Only: acst2.m

function costuacst2(brktimes,vO,xO,AB,DS,seqptr,consts);

Sestimate cost averaged over phase using polynomial curve fit
% see function acstgrd2 for detailed comments

ý% For validation testing of trndat & cc, declare as:
% function EQQ,RR,SS,TT]=trnstst2(wO,xO,AB,DS,seqptrconsts);
% and delete indicated portion at end.

%** This version is limited to nsequi or 2 only. **

nx-consts(1); nxccconsts(2); nxsnconsts (3)-;
nseq-consts (7); seqlenaconsts (8); keyseq=const• (9);
fastseq-consts(1i); ABvideanxc+nxs;
cycles-round (consts (12)/consts (13)); % trainlen/speriod

if (nzeq<1)I(nseq>2), errmasg('nseq out of range, acsrgrd'); return; end;

% fixed indices for array operations
cole= 1 :nx; cols2acols+nx; off colsucols-ni;
phirovscj. :nxc; ph12rows~phirovesnxc;
phicolsl. : ABvide; phi2coloophicols+ABvide;

% COMPUTE PAR METERS FOR ONE CYCLE OF FASTSEQ.

% Put first event in train data
isp=-seqptr(fastsoq,1); % initial event number
blk1nisp*nx+offcols;
rovsellmfind(any(DS(: ,blkl) -eyo(nz))) ; % non-identity rove
Q-zeros (nx);
Razeros(nx);4 S=O;
T-DS(:, blk1);

% Include rest of first cycle in train data
for J*2:seqlen;

isp=-seqptr(fastseqj); % event identifier
if isp>O. % isp points to DS block

% DISCRETE EVENT
blkoispenx+offcola; % index to D)S
rouselwfind(any(DS(: .blk) "-oyo(nx))); % non-identity rovs
stmaDS(rowsel,blk) ; % neo Btu
R(rovsel, : )=staeR; % Xest0*X
T(rovsel. :)-str*T; % Psimstsepsi
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R(:,rovsel)=R*stm'; % X-Estm*XJ*stm'+process noise
R(rowsel ,rowsel)=R(rowsel ,rovsel)+xO(rowsel,rovsel);

else, % isp must be < 0 % continuous time only
% •CONTINUOUS TIME TRANSITION

ti--isp; ABtI-AB*tl; AtI-ABtl(phirows.phirows);
tempvq- [-ABti l,vO(phicols ,phicols) *tl;zeros(ABvide), ABtl].;
tempxr [-Ati ,xO (phirovs,phirows)*ti;zeros(nxc), Atil';
tempwq=expm(tempvq);
tempxr-expm(tempxr);
phix-tempwq(phi2colsphi2cols); % phi extended
phi-phix(phirovs,:); % phi-[Phi(t1) ,Gamma(ti));
QtlVOati; % Qtl-\integral.{O}'{tl} B'exp(A'lt) wO exp(At) B dt
Qt1 (phicolsphicols)uphix *tempwq(phicolsphi2cols);
% Rti-\integral.(O}-{ti} exp(At) xO exp(A't) dt
Rtluphi (:,phirows) *tempxr(phirows.phi2rows);
SMS+sum(oum(R.*Qtl)); % delta cost correct
qtemp*T'*Qtl; % Psi'*Q

SR(phirovs, :)phi*R(phicols.:); % Xlstm*X
-QQ+qtemp*T; % W=W+stm'*Q*stm
T(phirows, :)=phi*T(phicola,:); % Psiaatm*Psi
R(: ,phirows)-R(: ,phicols)*phi'; % X[8stm*X)*stm'
R(phirows,phirovs)-R(phirove,phiro.s)+Rti; % Xamstm*X*stm'3+R

end; % if isp>O ... else ...
end; % for jo2:seqlen % no more discretes in speriod

* % EXTEND TO 'CYCLES' I 'CYCLES+1' PERIODS AND ADD FINAL DISCRETE EVENT
PsiaT;

* X"R;
S~W-Q;

cc-S;
stm-DS(rovsel1,blkt); % stm for final event

loopcount-[cycles,2J; % set number of loop iterations
for case-l:2; % 1: first cycles periods; 2: last period

for i-2:loopcount(case),
e. cc0cc+suM(.um(1.*Q))+S;

qtomp-Pui' q;
linTol;
V&W+qtomp*Psi;

+, Pai-toPei;

*] XwX*T'*R;
• end;

bases(case-i) nx; colsel-bawecols; rovesel-base*rovsell;
QQ(colsel, :)-W;

SS (case) wco;
RR(colsel. :)-X;
RR(rovsel, :)-stm*X;
TT(colsel, :)Pasi; TT(rovsel. :)-estmPsi;

ii
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RR(colsel,rowsell)=RR(colsel, :)*stm ;
RR(rovsel,rowseli)=RR(rowsel,rowsel1)+xO(rovsell, rowseli);

end; % for case=l:2

%A DELETE EVERYTHING FROM HERE DOWN TO CREATE TRNTST.MS~% s******************e***s***************************************

synch a consts(14); % al for synch
ncasesulength(brktimes)-i;
if synch=1, ncases=O; end; % select synchronous
phasingazeros (2,1);

if ncases-O, % this is a synchronous problem

% patch here to hard-wire synchronous phase (patch acstgrd2 likewise)
% phasing(1)ueps;
% end of patch

•-•- [Psi'xzt'Vwrt~yyt]-,.-

psi2(phasingABDS,seqptrconsts,xO,vO.QQRRSSTT);
costocatgrd2(vt ,xzt,yyt ,Psi,conats);
return;

else, j if ncaseos-O
if nseq'u2, .rrmag('EXECUTION ERROR, nsequ-2 in acsrgrd'); end;

end;

y-zeros(3,1);
varseq*3-keyaeq;
%l compute percentages for each interval
tweightumbrktimea(2: (ncases+ ))-brktieuo(1:ncaos);
tweightsmtveigbtus/(brktias(ncas•+i)-brktimes(1));
contsO; t-zeros(3,1); yozeros(3,1);
zsates.99; % back-off from ends to ensure unambiguous transition
zaal/Isat.; XcsX&*z&*z&/3;,

% compute \integrlA{phasing coat, and gradient for regions
for iwl:ncases,

to-brktimeo(i); tewbrktim|s(.14); span(tfe-ts)/2;
t(2)w(t!+t*)/2; t(0)wt(2)-xs&f*espaz; t(3)wt(2)4xsaf*espan;

for J-1:3; % get costs/prads for 3-point fit
phauing(varseq)at(j);
EPsi.zxtVtyytJ]...

poi2(phasing.AB.DS,seqptr.consts,zO,O,QQRP•,SS,TT);
y(j)=cstgrd2(wwt.xzt,yytPsiconsts);

end; % for Jul:3

f
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% approximate curve as: y = c x^2 + b x + a, x \in (-i.01,i.01).
% where auy(2); bu(y(3)-y(1))/2; n-(y( 3 )- 2 *y(2)+y(1))/ 2 .
% Then \integral y(\tau) d\tau - c(2x-3)/3 + a(2x) with x=l/xsafe.

a=y(2);
c=(y(3)-2*y(2)+y(1))/2;

% include data from current phase region in composite cost/grad

cost=cost+tweights (i) * (c*xc+a*xa);

end; % for ijs:
return

% end of function acst2 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.3.6 Cost and Gradient Definition: citgrd2.m
function Ccostgradient],...
catgrd2(vwt,uxt,yyt,Psi.consts,Lam,P,vvtdot,xxtdot,yytdot,LLamDot,PDot);

2 This function computes the cost or cost plus gradient for the
% BTP state transition matrix Psi (i.e. at one phase condition).
% For cost alone, the last four input arguments are optional.

% INPUTS: vwt a state error weighting matrix (positive semi definite)
% xxt * expected disturbance covariance (process noise)
n yyt u cost correction for noise in current BTP
% vvtdot a partials of state error weighting matrix
% xxtdot a partial@ of expected disturbance covariance
Syytdot - partial* of cost correction wrt theta
% theta u row vector of the undetermined coefficients.
% consts a row of system constants
% Las - column vector of the eigenvalues of Psi.
SP a eigenvector matrix of BTP state transition matrix
% LamDot a the nx by nvar Jacobian (d Laud theta).
% PDot t row of (d P/d theta(i)) blocks

% 2 One of two cost functions are selected by consts(15).

% If consts(16)>1,
% costosun(abs(eig((Psi)))M.8), 4th order version comented out

% If consts(15)i .
*- Ii• • cos - uzt.,(P'\[1./(t-conJ(Laa).La.')-i).*(PewvteP)Je/P)
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% This is the weighted (by vwt) value of the expected
% noise power for specified process noise (xxt).

nx=consts(1); % total number of states
nvar--consts(S); % number of variable parameters
stablesconsts(15);
BTPaconsts (10) ;

if nargin<7, % supply any missing arguments
[P,Lam]-eig(Psi);
Lamudiag(Lam);
for i-l:nx, P(:,i)uP(:,i)/norm(P(:,i)); end;

end; % if nargin<S,

if stable>wl; % use unstable cost function
*•.Q omega-coni (Lam) .*Lam;

tempnomega.-3; % eighth order cost
% temp-omega; % fourth order cost

cost-omega',temp;
if nargout>1, % compute gradient too

omegastemp;
gradient-8*real ((omega. *Lam)'*Lamfot) ;

end;
else, X it stable)-t ... else ... % use stable cost function

ALawabs (Lam);
if max(ALam)>1-epe, % if actually unstable

cost-l/eps; % near infinite cost
else. % if max(ALan)... else %,. • i.e. if stable

oMega-(1) ./(1-coUj (Lam*LM. 9');
vpuvut*P;
pwp-P'*vp;
tempaomega. ,pvp;
inavp'inv(P);*. •:mt"eraplsr (invp' etemp*invp);

cost-usua(X(zzxxt.*teap))+yyt;
coutucost/BTP;
if nargout)l, % compute gradient too

oMsga.q-oMega. *oKmga;
cols l-nax:0;

, for ifl:nvar, % for each variableStinx-isnx;

pvpdot*PDot(:,inx+cols)Pevp; % interria result
pvpdotopwpdot*pvpdot' .P' emvtdot( :, inx+zcos)eP;
oaegdoteconj(Lan)eLaaDot(:,1).'; % interria result
onagdotu (omegdot*ouegdot') .eooegasq;
teapdotomega. epwpdot+mozgdot.,pvp;

WOQVINUMO WM NQ06 ,ýtoU@v VNMWM
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temp3-(tempdot-2*temp*invp*PDot(: ,inx+cols)); % interrim result
temp2uxxt. *real(invp' *temp3*invp)+xxtdot(:,inx+cols).*templ;
gradient (i)usum(sum(temp2))+yytdot(i);

end; % for inl:nvar
gradientereal (gradient)/BTP;

end; % if nargout>1
end; % if max(AbsLam)>I-eps ... else ...

end; % if stable
cout-real(cost);
return;

% end of function catgrd2 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.3.7 STM and Partials: psi2plus.m
function (Psi,XX,WW,YYLam,PPIX,PWWPYY,PLam,PP]u...

-- = -psi2plus(t2go,ABDSaptrvptroconxOvOqqzrr'ss,tt•blocktvarpqqprrpssepI

% "pui2plus" computes BTP STN, related matrices, and gradients.
% See extensive comments at end of code.

fprintf(' psi2plus: ');

% UNPACK CONSTANTS
no(con(o); MccoA() nxswcon(3);
nvar-con(S); nvarc-con(a); usequcon(?);
seqlen-con(e); BTPocon(IO); fastsequcon(ii);
traiulenucon(12); sperioducon(13); AI~ideonxcznu;
% CREATE INDICES FOR ARRAY OPERATIONS
colset:532; oftfcolscols-n; varindxt:ever;
phirowe I nic; x2colesphirovsnxc; x3cols-x2cols*nxc;
phicolsl: AMvide; v2cols-phicols4ABvide; v3colsaw2colsOAvido;
offpcols-phicols-nx; offprowe-phirows-nx;
% SET INDICES FOR PARTIALS CALCULATIONS
it nargout>6, nvaetalength(tvar); cvarasltfind((vptr(:, I)--O) 1);
else. varindx-m;tvarU;nvartuO;cveruel-O;nvercuO; vptr(I,:)--1; end;
% VERIFY t2go IN RANGE
if length(t2go)'anseq, errus('Extra/mieuing phase tiles.); end;
if (any(t2gocO)), errmos('Iegative tie to go in pal plus.'); end;

4 % ----------------- Set Pointers for Initial Discrete Event .-----------
% t2goft) will be the time from BTP start to the first discrete
% event for each sequence. 1sptr(i.epindx(t)) defines the event.
done-l; spinduo*ne (t2So) eseqln; lastsespzeros (t2go);
vhile done>O; % copletion flag

for i-l:nseqlaststep(i)-sptr(i.splndx(i));end; % index to last event
laststepulatstep.eU (lststWpO); % sask discrete events
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backstepu (laststep<t2go); % boolean
donefsum(backstep); % 0 if done
t2gont2go-backstep.*laststep; % adjust t2go
t2go-t2go.*(t2go>O); % eliminate any negative times
spindxmspindx-backstep; % adjust index
spindx=spindx+seqlen*(spindx<l); % fix possible wrap-around

end; % while done>0
spindx-spindx+i; % set to current event
spindx-spindx- (spindx>seqlen)*seqlen; % fix wrap-around

S----------Compute Psi, PsiDot, XX, PXX, WV, PWW, YY, PYY ----------
% Psi = psi, the state transition matrix for the specified t2go.
% PsiDot a Cd Psi/d theta-i, ... , d Psi/d theta-nvar) {nxn block row)
% XX = E xx' at BTP end from process noise during BTP
% PXX - partials XX wrt theta {row of nxn blocks)
% WW a matrix s.t. xO'*WW*xO is the cost for xO error at BTP start
% PWW = partials WW wrt theta {row of nxn blocks)
% YY - cost from process noise during BPT
% PYY a partial.s YY wrt theta (row of scalers)
% All used as accumulators for intermediate results during recursions.

% DECLARE VARIABLES SO STUFF TO BE CLEARED WILL BE AT END
Psi-eye(nx); PsiDotszeros(nx,nvar*nx);

eXXzeros (nx); PXX-zeros (nx ,nvar*nx);
YYNO;, PYazeron(nvar,1);
WW-zeros(nx); PWbazeros(nx,nvarenx);
i10;jmO; inx-O; jnxmO; iruO; irowO; icwO; icouO;ispnxiO;
t2-O;offsatuO;dtuO;st-zeros(t2go) ;sselsO;

% INITIALIZE FOR FIRST EVENT
done-i; elaptimeO; % time into BTP
zerotolaBTPeeps;
[t1,it]-min(%2go); % time to first event
lap.-sptr(i1.spindx(1i)); % identify first sto
% QUICKIE INITIAL DISCRETE EVENT IF PRACTICAL
if iap)O. 2 filrst event discrete

blkeelviepenztoffcols;
Psi-DS(: .blksel) ;
varsel-find( (vptr ( :. 1)wuisp) ');

for ievarsel, PeiDot(vptr(i,2).(i-l).nx~vptr(i,3))ul; end;
spindx (i1) -spindx(i1)+1;

fprinatf(D'); tprintf(int2str(isp));
end; % if isp)O

% MAIN STATE TRANSITION KATAIX (ata,) CALCULATION LOOP
while done>O. % main loop for Psi talcs

if (.laptimeotl*zerotol)> BTP.tiuBTP-elaptia.;don•-O; end; % last step
spindx-spindx-(spindxeseqles).seqlea; % fix possible vrap-around
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if t1<=O, % t1-O -> do next event now
st-sort(t2go); % find next event time too
t2-st(2); % time to second event
if (iIu=fastseq)&(t2>=trainl.en)&(spindx(ii)u1l)&...

((trainlen~elaptime)<BTP), % next event is a train
-m TRAIN EVENT

rowselacols; ssell; dt-trainlen; % use short train indices
if (t2>=(dt+speriod))&((dt~elaptime+speriod)<BTP), % k cycles

rowselarowsel+nx; ssel-2; dt=dt+speriod;% use long train indices
end;
stm-tt(rowsel,:);
YY=YY+sum(sum(XX.*qq(rowsel,:) ))+ss(ssel);
qtemp=Psi'*qq(rowsel,:);
for i-varindx, blkselmi*nx+offcols; % for all variables

qqdotaqtemp*PsiDot(:.blksel);
PWW(: blksel)=PWW(:,blksel)*qqdot+qqdot';
PYY(i)=PYY(i)+sum(sum(PXX(:,blksel).,qq(rovsel,:) ));

.*• PXX(:,blksel)=PXX(:,blksel)*stm';
end; % for i-varindx
PsiDotmstm*PsiDot;
PXX=stm*PXX;
OldX=XX;
XX-stm*XX;
for iul:nvart, % for vars in train

Jetvar(i); blkseluj*nx~offcols; trnblkui*nx+offcole;
PWW(:.blksel)nPWW(:,blksel)÷Pmil*pqq(rovueltrnblk)*Psi;
PYY(J)-PYY(J)+sum(suu( OldX.*pqq(rowel.*trnblk) ))*psa(ssel.i);
PsiDot(:,blksel)mPsiDot(:,blksel)+ptt(rovael.trnblk),Psi
rrdotwXX'ptt(rovsel.trnblk)';
PXX(:.,blksel)uPXX(.,blksel)+rrdot•rrdot'*prr(rovsel,trnblk);

end; % for iwtvar
VV.WW*qtemp*Psi;
Paimstoopoi;
IXX-Xstau'+rr(rowsel,:);
fprintf( T'); fprintf(i•t2str(ssel));
t2go-t2go-dt;
elaptimeuslaptimodt;•!• t2go(Wa)tl;

elseo % next event NOT A TRAIN EVENT

isps--ptr(i.spinds(iW)); % event identifier
if isp>O, % lap points to DS block

* I DISCRETE EVENIT
blksel'tspenx+otfcols;
rovaelufind(any(DS(:,blksel)'-eye(nx)));
if lengtb(rourol)(1, rousel-l; end; % guard for rovael-eyo
stauDS(rovsel~blksel);
PsiDot(rovsel,:)-staePsiDot;
_PX(rovael, M
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for i=varindx; % for all variables
inx-(i-1)*nx; blksel-inx+cols; colsel-inx+rowsel;
PXI(:,colsel)-PXX(:,blksel)*stm';

end; % for invarindx
XX(rovsel,:)=stm*XX;
varsel=find((vptr(:,i)==isp)');
for invarsel, inx=(i-i)*nx; % variables in DS block

blksel-inx+cols; ir-vptr(i,2); ic=vptr(i,3); iro-inx+ir;
PsiDot(ir,blksel)=PsiDot(ir,blksel)+Psi(ic,:);
PXX(:,iro)-PXX(:,iro)+XX(:,ic);
PXX(ir,blksel)=PXX(ir,blksel)*XX(:,ic)';

end; % for i-varsel
Psi(rowsel,:)=stm*Psi;
XX(:,rowsel)=XX*stm';
XX(rovsel,rovsel)-XI(rowsel.roWsel)+xO(rovaelrowsel);
fprintf('D'); fprintf(int2str(isp));

else, % isp must be < 0 % i.e. continuous segment
- t2go(il)=t2go(il)-isp; % increase that t2go element

1: fprin'tf(Q');

end; %if isp>O ... else ...
end; % if (iinsfastaeq ... else
spindx(il)&spindx(il)+i; % increment sequence index

else, % it (ti<n 0) i.e. t1>0 > 0time passes. continuous segment

% CONTINUOUS TIME TRANSITIONS
--- z ABtlwAB~tl;

AtI-ABtl(phirows,phirovs);
tempvqu[AkBtI,,vO(phicolsphicols)*tl;zerou(ABuide), ABtWJ;
tempxr'm[-Atl,xO(phirows,phirovs)*tl;zeros(nxc), Ati'];
it nargout)6 4 length(cvareel)>0,
ABdotazero.(A~vide); i-cvarsel(l); Aedot(vptr(i,2),vptr(i,3))wut;
tespvqt.[Wwpq,[zerou(ABvide);ABdot)];zerom(ABvide,2*ABvide).ABtI];
tempzru[tampzr,[z.ros(nxc) ;ABdot(phirovephirovs)]; ...

zeros(nxc,2enxc),Atl];
end; Z it nargot%6 & lanth(cvarsel)>)
t•mpVwqexpaM(tmpgq);
tempxraexpo(towpxr);
phixutempvq(v2co1s,v2cols);
phi-phix(phirovi,:);

Qtl(phicoal.phicols)spbixstoapVq(phicois.v2co0.);
qte•upPsi'*Qtl;

Ktluphi(: ,phirovs)ot"apr(phioovs.,2cols);
inzu0;
for i-varinds;

blkselwinxicole;
inx-inz*nz;

10



E.3. Design Routines 149

qqdot*qtemp*PsiDot(:,blksel);
PWW(:,blksol)=PWW(:,blksel)+qqdot+qqdot';
PYY(i)-PYY(i)+sum(sum(PXX(:,blksel).*Qti));
PXX(:,inx+offprows)=PXX(:,inx+offpcols)*phi';

end; % for iavarindx
XX(phirovs,:)uphi*XX(phicols,:);
PsiDot(phiroas , : )=phi*PsiDot(phicols,:);
PXX(phirows, )=phi*PXX(Dhicols,:);
for jwI:length(cvarsel), Z cont. vars. (not tested)

jjacvarsel(j);
inxublock(jj);
blkseluinx+cols;
blkrowainx+phirows;
blkcolwinz+phicols;
phidot=tempwq(phirows.w3cols);
Paifot(phirows.blksel)uPsiDot(phirovs,blksel)+phidot*Pei(phicols.:);
rrdotuphi(:,phirows)'*tempxr(phirows,x3cols);

*0 rrdotarrdot+rrdot';
PXX(phirovs blkrow)=PXX(phirovs,blkrov)+rrdot;
rrdot-Xl(:,phicolo)*phidot';
PXf(:,blkrov)uPXX(:.blkrov)+rrdot;
PUX(phirove.blksal)aPXX(phirow.,blksol)+rrdot';
qqdotuphil:"*empvq(phicoluv3cola);
qqdotaqqdot~qqdot';

X PW(phicolo.blkcol)"PVW(phicolsblkcol)+qqdot;
it J..lngth(cvarsel);

AIdotozerol(ABgide); incvarool(j+1);
ABdot(vptr(U,2).vptr(U.3))wtl;
teupvq(w2col*vuicole)mAfdot;
t-pzr(s2cols,xz3cols)uABdot(phirovswphirove);

* tGpVawOxpa(teupvq);
t*&pxraezpm(to§pxr);

end; % it J41apgth(cvarol)
end: % for ial:nwar

,-* Psi (phlrov~o )"phA*Psi(phaicols,:);
Sl[U(: .p•rovs)-XX(; .phcols)*phti;

IX(phirove.phirovswAZX(phirovo,pirovu).fte;
*laPtiuies~lAPtitIG~tt.A t2go-t2go-tl;

tpriantf('C.);
--O n44 % it tI <NO ... else...

[tt1itw-nin(tigo); I next event a its sequence
end; % while eaIpti&6+tICBTP % no more discreto in BTP

% Clear large temporary arrays
Sclea •q; clear rr; clear so; clear tt;

"" clear pqq; clear prr; clear pas; clda ptt;

.. L , IV
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clear phi;' clear phidot; clear OldX
clear tempvq; clear tempxr; clear st;
clear phi; clear phidut; clear sta; clear phix;
clear ABti; clear Ati; clear Rtl; clear Qtl;
clear rrdot; clear qtemp; clear qqdot;
clear blksel; clear rowsal; clear trnblk; clear varsel,

if nargout<5; return; end;

Z**e***e*****e***cc***End of Psi & PsiDot Calculation*****************

S.------------------------ Eigen Calculations ---------------------------

[P,Laznjueig(Psi);
Lammdiag(Lam); X convert to vector
for i-l:nx. P(:.i)uP(:,i)/norm(P(:,i)); end; % normalize eigenvectoro
fprintf(l, Sigs. Partials: ');
if nargoutO7, return, end;

S.----------------------- Jacobian Calculations --------------------------
PLam-zeros(nx,wvar); % allocate space for arrays
PPazeros (ax,nx*nvar);
tempOmzeros(nx.nx*nvar);
&ltcol-O:nx: (nx*nvar-1); % column offsets for nx by nx.nvar arrays
L-0; omegao; % initialize before first pass

Sprecompute all PsiDot*P(:,i) vectors
colsaelcols;
tor i-vauindz. t.p)(: .colsel)-PsiDot(: ,colsol)sP; colsel-colsel*nx; end;

for incols, % im-'sx to *igonvalue/vactor
it (%)s(o~guO)&(conj(La(i)).4). X short cut for conjugates

PP(:, altcol*i)-conj (PP(: .altcol i-1));
61804 % it (i>')k(coaj(Laa(i))wL) % norIal path

colsel-i+altcol;

L,,La(i) ;
• sog•,iaagL);

% procomputo tmpl-pinV(Leey.. (eye-pep')'Psi)
templ=L'eye(nx)-Psuip(p ePsi);

-- 0 ,S.V]-sid(tnpl) ;
S-disg(S);
tolmaXnS(1)0 0p.;
irusum(S>tol);I~i reel-I: ix;

S-diag(one (itI) .. S(r.el)).
0 Vpl-V (: rsVl).S' (: .rwl)';
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% precompute temp=ipinv(L*eye+(eye-p*p')*Psi)* (I-p*p')
tempitempl- (tempi*p) *p' ;

% compute p-dot.ortho and store in ?P
PP(:,colsel)=templ*temp0(:,colsel);

% compute lamdot = p'*PsiDot*p + p'*Psisp.dot.ortho
PLam(i, :)=p'* (tempO(:,colsel)+Psi*PP(:,colsel));

if omeg'=O, % add correction to p.dot.ortho for complex EV's
sig=real(L);
temp2=Psi*imag(p)-sig*imag(p)+omeg*real(p); %. RHS of eqn 9
[maxcompr,maxindx=--max(abs(temp2));
maxcompr-temp2(maxindx); % biggest component
maxcompl-real (tempO (maxindx,colsel));
maxcomplxmaxcompl - real (PLam(i, : ) )*real (p(maxindx)); % same
maxcompl=maxcompl + imag(PLam(i,:))*imag(p(maxindx)); % component
maxcompl=maxcompl+Psi(maxindx, :)*real(PP(: ,colsel)); % for nvar
maxcompl=maxcompl - sig*real(PP(maxindx,colsel)); % LHS eqns
maxcompl=maxcompl -omeg*imag(PP(maxindx,colsel));
gamma=sqrt(-i)*(maxcompl/maxcompr); %. coefficient
PP(:,colsel)=PP(:,colsel)+p*gamma; % true P.Dot vectors

end; % if omegu-O ... else ...
end; % if (i>l)&(conj(Lam(i))uuLam(i-1))
±printf(int2str(i)); % something to watch

end; %. for i-i:nx

fprintf(' DONE.');
fprintf(' SR= Yg',max(abs(Lam)) );
fprintf('\n');
return;
% end of function psi.plus $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S

%h OUTPUT: Psi a BTP state transition matrix
%, XX a E(xx') at BTP start
%. WW a BTP weighting matrix at BTP start
% YY = cost correction for noise in current BTP
%. Lam a column vector of Psi's eigenvalues
% P a matrix of Psi's unit eigenvectors
%, PXX a partials XX (block row) vrt theta
% PWW a partials WW (block row) wrt theta
% PYY a partials YY irt theta
% PLam = Jacobian martix (d Lam / d theta (nx by nvar)
% PP. row of (d P / d theta) block matricios (nx by nvar*nx)
%. INPUT: t2go a times from BTP start to start of each sequence (0).
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AB.DS,vptr,and sptr: (see 'build.m' and 'update.m')
% Zcon: (see 'check.m')

% x0 - process noise covariance
% qo = static weighting matrix
%. qq V1 [ ;W2J

%rr X1 X;X2]
55 =s [Y1Y2)

% tt = [Psil ; Psi2 I
Spqq * E WI.dot.- ... Wi.dot.nvart
%. W2.dot_1 .. W2.dot.nvart )
Sprr a [ Xi.dot-1 ... Xl.dot-nvart
% X2_dot_1 ... X2_dot-nvart J
% pas a [ YI.dot.A ... Yl.dot-nvart
SYi-dot_2 ... Y2.dot-nvart )
%. ptt u Psii.dot- ... Psil-dot.nvart
% Psi2.dot._ ... Psi2.dot.nvart )

% . Where Psil, Wi, Xi and Yi apply to the shorter train (k-i periods),
% and Psi2, W2, X2, and Y2 apply to the longer train (k periods).
% The '_dot.i' notation indicates the partial with respect to the i'th
% variable (theta element) in the fast sequence (nvart such variables).

%***ee**.***a***e*** STATE TRANSITION MATRIX PARAMETERS**********e**.ý*

% These parameters are defined for any time period:
% Psi -State Transition Matrix for the period
e PsiDot n partial of Psi vrt a variable parameter (theta element)
% W a weighting: x(O)'W x(O) a \integral.{period} x(t)'WO x(t) dt
% W.dot a partial of W wrt a variable parameter (theta element)
% X - E{x(f)x(f)'} from process noise (4O) during period (if x(O)uO)
% X.dot - partial of X wrt a variable parameter (theat element)
% Y a E{\integral.{pariod} x(t)'WO x(t) dt} if x(O)*O. (scaler)
% Y.dot a partial Y wrt a variable parameter (theta element)

% RECURSIVE ALGORITHM FOR COMPUTING STh PARAMETERS
*-• % Suppose: Psi(tf,tO) a T(n)eT(n-i)e ... *T(2)*T(1), where T(W) is

en the state transition matrix <stm) for the i'th segment of the period.
SLeo t(i),R(i), and 3(i) represent WX. and Y, respectively, for T(i).

% Initialize:
% Pi(O)WI, PuiDot(O)w[O,O,...,O,O] These may be considered

* W(O)-O; VWdot(O)*[OO..,.,O,O] correct values for TIal,
X(O)-O; X.dot(O)u[O,O,....O,OJ a null transition with

en Y(0)MO; Y.dot(O)m*O,O....,O,O] zero elapsed time.

% Recur3ions:
% Pai(i)=T(i)*Psi(i-1).
% PsiDot(i)=T(i)ePsiDotCi-1)+T-dot.(i)*Psi(i-.1),

_-1'X ,,r
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% W(i)=W(i-1) + Psi(i-i),*Q(i)*Psi(i-I)
% W-dot(i)fW-dot(i-1) + PsiDot(i-l)'*Q(i)*Psi(i-i)...
%Y, +Psi(i-I)'*Q-dot(i)*Psi(i-1) + Psi(i-i)'*Qi*PsiDot(i-1)
% X(i)=T(i)*X(i-i)*T(i)' + R(i)
% X.dot(i)-T.dot(i)*X(i-I)*T(i)' + T(i)*X-dot(i-I)*T(i)'...

+T(i)*X(i-l)*T-dot(i)' + R.dot(i)
% Y(i)=Y(i-j) + X(i-I).*Q(i)
% Y-dot(i)=Y-dot(i-1) + X.Iot(i-l).*Q(i) + X(i-1).*Q-dot(i)
2
% Then, Psi(n), PsiDot(n), W(n), W.dot(n), X(n), X.dot(n),
% Y(n) and Y.dot(n) apply to the period covered by Psi.

%

% Train concept: The fastest sampler has frequent bursts or trains of
% k or k-I consecutive short sample periods where:
% k-trunc(2'nd shortest sample period/shortest sample period).

S.% Data for these fixed STh's are precalculated and stored in Itrndat'
% to avoid subsequent reduce redundant calculations. 'trndat' includes
% the discrete events on both ends of the fast 'sample train.'

2 The precalculated trndat and cc parameters are defined as:

% qq C Wi ;W2
% rr (X1 ;X2I
% as - [1;Y2 I
% tt ( Pail ; Ps12 3

% pqq a [ WI.dot.l ... WI.dot-.nvart
"% W2.-dot.1 ... W2.dot-v.vart )
% prr a C 1l.dot.1 ... XL-dot.nvart
% X2._dot.1 ... 12.dot.nvart 3
% pas a E YI.dot.1 ... Y1.dot.-nvart
2 YI.dot.2 ... Y2.dot.nvart J
% ptt - [ PaiI.dotI ... Psil.dot.nvart
% Psi2.dot.l ... Psi2.dot.nvart ]

% Where Pail, WI, Xt and YI apply to the shorter train (k-I periods),
% and Ps12, W2, X2, and Y2 apply to the longer train (k periods).
% The '.dot.i' notation indicates the partial with respect to the i'th
% variable (theta element) in the fast sequence (nvart such variables).

2 end of function Psi.plus $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

E.3.8 Precomputation for psi2plus: trains2.m
function EQQRRSS,lT,QQdot,RPddot,SSdot,Trdot],,..,
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traint2(wO,xO,AB,DS,seqptrvarptr,conste,blocktvarsel,cvarsel);

%** This version is limited to nsequl or 2 only. **

% See acstgrA2.m, for additional comments and discussion

fprintf(' Train2: step: ');

nx=consts(i) ; nxc-consts(2);- nxs-consts(3);
nvar=consts (5); nvarcoconots (6); nsequconsts(7);
seqlen=consts (8); keyseqnconsts (9); fastseqmconsts(ii);
ABwide=nxc+nxs; cyclesuround(consts (12)/consts (13)); % trainlen/speriod
nvart=length(tvarsel); nxvanx*nvart;
nvarct=sum(varptr(tvarsel,1)iuO);

% •indices for array operations
cols=1:nx; ccls2-cols+nx; off colsacols-nx;
phirowsel: nxc; phi2rovusphirovosnxc; phi3rows=phi2rovs+nxc;
phicols=l: ABEvidQ; phi2colsaphicols÷ABvidu; phi3colosphi2cols+ABuide;
varindxul:nvart;

% COMPUTE PARAMETERS FOR ONE CYCLE OF FASTSEQ.

-% Put first event in train data
isp--seqptr(fastseq, 1); % initial event number
blXl=isp*nx+offcols;
rovsoelluind(any(DS(: ,blkl) '-eye(nx))); % non-identity rows
Quzeros(nx); Qdotwzerox(nx,nxv); % initial W/Wdot
Ruzeros(nx); Rdotmzeros(nxinv); % initila X/Xdot
SaO; Sdotmzeros(1,nvart); %initial Y/Ydot
ToDS(:,blkl),; Tdotszeros(nx,nxv); % initial Psi/PsiDot
varselirfind(varptr(:, 1)muisp); % variables in tastseq
for ievarsell; % step thru fastseq vats

irovarptr(i,2); icavarptr(i,3)+block(i); % Tdot rov/olumnSTdot(ir,ic)-u ; % Tdct(ir,tc)-I

end; X for ievarsell
lprintf(int2str(l)); % progress display

% Include rest of first cycle in train data
for jm2:seqlen;

iap--seqptr(fastseq,j) ; % event identifier
it isp>O. % isp points to DS block

S% DISCRETE EVENT
blkaisp*nx.offcols; % index to DS
rowselutind(any(DS(: .blk) '-eye(nx))) ; % non-identity rows

- - - ~ ~ ~~ ~ ~nntgA
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stm=DS(rowsel,blk); % new stm
Tdot(rovsel,:)fstm*Tdot; % PsiDotustm*PsiDot
R(rowsel,:)=stm*R; % Xastm*X
Rdot(rovsel,:)-stm*Rdot; % Xdotustm*Xdot
for isvarindx, % for all Mdot blocks

inx=f(i-i)*nx;
Rdot(:,inx+rovsel)-Rdot(:,inx+cols)*stm'; % Xdot=[stm*Xdot)*stm'

end; % for i=varindx
varselufind(isp==varptr(:,i)'); % find vars in stm
for i=varsel, % for variables in stm, add Tdot terms

blk=block(i)+cols;
ir-varptr(i,2); icavarptr(i,3);
Tdot(irblk)uTdot(ir,blk)+T(ic,:);% PsiDot-stm*PsiDot+stmDot*Psi
ico=block(i)+ir; % Xdotfstm*Xdot*stm'+stm*Xestmdot'+stmdot*X*stm'
Rdot(:,ico)=Rdot(:,ico)÷.(:,ic);
Rdot(ic,blk)=Rdot(ic~blk)+R(:,ic)';

end; X for itvarsel
* T(rowsel,:)ustm*T; % Psiustm*Psi

R(:,rowsel)=R*stm'; % Xu[stm*X)*stm' + process noise
1(rowselrovsel)uR(rowselrovsel)+xO(roa.el,rovsel);

else, % isp must be < 0 % continuous time only
-X CONTINUOUS TIME TRANSITION

tl=-isp; ABti-AB*tli; Atl-ABtl(phirovs,phirows);
tempwq=[-ABtil'vO(phicolsphicols)*tl;zeros(ABwide), ABtl];
tempxý-a[-Ati,xO(phirows,phiroves)ti;zsros(nxc), Atil];
if nvarc>O,

ABdotnzeros(ABvide); incvarsel(i);
ABdot(varrtr(i,2),varptr(i.3))nti;

tompvqwmtempwq,[zeros(ABvide);ABdot];zero.(ABwide,2.ABvide),ABtl];
trmpxrm toimpxr, (zero. (nxc) ;ABdot(phirovphirovs)];...

zeros (nxc.2*nzc) ,Atl);
end; % it nvarc>O
tempvq-expm(tempvq);
tempxrmexpm(tempxr);
phixutempwq(phi2cols,phi2cols); X phi e*ztnded
phimphix(phirovs,:); % phiu(Phi(tl) .0a=m(t1)3;
QtlmwO*tl; % Qt1l\integral.{O}'{t1} Bexp(Al't) wO exp(At) B dt
Qtl(phicolsphicols)-phix'*tempvq(phicola,phi2cols);
% Rti-\integral.{O}{'(t} exp(At) xO exp(Alt) dt
Rtlmphi(:.phirovu)*tempxr(phirovsphi2rous);
S*S+sum(sum(R.*Qtl)); % delta cost correct
qtempwT',Qt1; % Psi'*Q
qqdotwqtemp*Tdot; 2 Pli'*Q*P.JDot
Qdot*Qdotgqqdot; % Wdot*Wdot*Psi'*Q*PsiDot
for i-varindx; % column operations

inx-(i-1)*nx; blk-inx~cols; colael-inxephicols; roweelainxophirows;
% Wdotu[Wdot+Psi'*Q*PsiDot]jPsiDot'eQ*Psi
Qdot(:,blk)uQdot(:.blk)+qqdot(:,blk)';
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Sdot(i)-Sdot(i)+sum(sum(Rdot(:,b1k). *Q A));
Rdot(:,rovsel)fRdot(:,colsel)*phi'; % XdotfXdot*stm'

end; % for i-varindx
* OldRfR;

R(phirovs,:)=phi*R(phicels,:); % X-stm*X
Rdot(phirovs,:)3phi*Rd.oc(phirols,:); % Xdot=stm*[Xdot*stm']
Tdot(phirows,:)-phi*Iiot(phicols,:);

% INCLUDE: T.dot, qdot, and R-dot TERMS (IF ANY)
for j-1:nvarct, % cont. vars. (not tested)

immin(find(cvarsal(j)=-tvarsel));
inxfblock(cvarsel(j));
blksinx+cols; rowselinx+phirows; colsel-inx+phicols;
phidotatempvq(phirows,phi3cols); X T-dot
Tdot(phirovs,blk)-Tdot(phirows,blk)+phidot*T(phicols,:);
rtemp-phi(:,phirows)*tempxr(phirovs,plii3rows); % R-dot
Rdot(phirovs,rovsel)=Rdot(phirows,rovsol)+rtemp; % Xdot+Rdot
rrdot-R(:,phicols)*phidot'; % stm*X*stmDot'

*I• Rdot(:,rovsel)aRd,4t(:,rowsel)+rrdot;
Rdot(phirovsblk)-Rdot(phirovs,blk)+rrdot';
qqtempuphix'*tempvu(phicols,phi3cols); % Q.dot
Sdot(i)mSdot(i)+sum(sum(OldR(phicols,phicols).*qqtemp));
tqdot=T(:,phicols)*qqtemp;
Qdot(:,blk)-Qdot(:,blk)*tqdot*T(phicols,:);
if jcnvarc; % set up next cvar, if any

ABdotozeros(ABvide); i-cvarsel(J+1);
ABdot(varptr(i,2),varptr(i,3))mtl;
tempvq(phi2colsphi3cols)=ABdot;
tempxr(phi2rous,phi3rovs)nABdot(phirowsphirows);
tempwq=expm(tempwq);
tempxruexpm(tempzr);

end; % it imcvarsel(()
end; % for inl:nvarc
Q-Q+qtemp*T; % WUWVstm,*Q*Bam
T(phirows, :)mphi*T(phicols,:); f% Peiustm*Psi
R(:,phirovn)aR(:,phicols)*phi'; % X-1tm*XJ*stm'
R(phirovs,phirows)uR(phirovephirov).Rt1l; % X-uatm*X*sta'3+R

end; % if isp>O ... also
fprinatf(int2str(j));

end; % for ju2:seqlen % no more discretes in speriod

% EXTEND TO 'CYCLES' A ICYCLES+11 PERIODS AND ADD FINAL DISCRETE EVENT
S..fprintf(', cycle: ');

Psi-T; PsiDot-Tdot;
XWR; Xdot*Rdot;
W-Q; Wdot*Qdot;
ccS; ccdot-Sdot;
stmaDS(roveell~blki); % eta for final event
fprintf(int2str(l));
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"loopcountu[cycles,2]; % set number of loop iterations
for case-1:2; % 1: first cycles periods; 2: last period

offcycm(case-I)*(cycles-1);
for i-2:loopcount(case),

cc=cc+sum(sum(X.*Q))+S;
qtemp=Psi'*Q;
qqdotuqtemp*PsiDot;
qqqdot=Psi'*Qdot;
Wdot=Wdot+qqdot;
OldX-X;
XfT*X;
Oldldot-Xdot;
Xdot=T*Xdot;
PsiDot=T*PsiDot;
for juvarindx.

jnxm(J-I)*nx; blkujnx+cole;
Wdot(:,blk)-Wdot(:,blk)+qqdot(:,blk)'+qqqdot(:.blk)*Psi;
ccdot(j)sccdot(j)+sum(sum(OldXdot(:,blk).*Q...

*OldX.*Qdot(:,blk) ))+Sdot(j);
rtemp=X*Tdot(:,blk)';
Xdot(:,blk)*Xdot(:,blk)*T' + rtemp + rtemp'+Rdot(:,blk);
PsiDot(:,blk)uPsiDot(:,blk)+Tdot(:,blk)*Psi;

end; % for juvarindx
W-W+qtemp*Psi;
PsiuT*Pui;
XuX*T'+R;
fprintf(iut2str(i+offcyc));

end;
basew(case-1)*nx; colselsbae+cols; rovoel-bue~rovsoll;
QQ(colsel,:)-W; QQdot(colsel,:)=Wdot;
SS(case)-cc; SSdot(cue,:)-ccdot;
R•(colsel,:)EX; RK(rovwel, :)-ustX;
RJdot(colsel,:)-Xdot; R•dot(rovael,:).stzXdot;
Trdot(colxel,:)mPeiDot; Tldot(rovsel,:)s)tmPsiDot;
for i-varindx, inxs(i-)*nx-;

RRdot(coluelinx~rovsoll)4PRdot(colael inx+cols)*atm';
end; % for i-varindi
for iuvarsell. blkublock(i)*cols;

irovarptr(i,2); icavarptr(i,3); iroubaseir; icoublock(i)+ir;
fTdot(iro,blk).TTdot(iro,blk)4Psi(±c,:);
RRdot(colsol,ico)uRRdot(colsel,ico)+RR(colael,ic);
Rptdot(iroblk).RRdot(iro,blk)*RR(coluel~ic)';

end; % for i-varsell
Tr(colsel,:)-Poi; TT(rovel, :)-stm*Psi;
RR(colsol,rovsell)-RR(colsel,:)*stal;
RR(rovoel,rovsell)-RR(rowoel,rovaell)+xO(roveoll,rovseli);
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end; % for case-I:2
fprintfQ(DONE.\n') ;

% end of function trains2.m $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$4$$$$

E.3.9 STM Only: psi2.m

function [Psi,XX,WW,YY]=...
psi2(t2goAB,DSsptr,con,xO,O,qq,rr,ss,tt);

% Compute ST) and related matrices.
% See function psi2plus for detailed explanation.

% UNPACK CONSTANTS
nx=con(l); nxcucon(2); nxscon(3);
nvarucon(5); nvarctcon(6); nsequcon(7);
seqlen'con(8); BTP=con(lO); fastsequcon(11.);
trainlen-con(12); sperioducon(13); ABwidexnxc+nxs;
% CREATE INDICIES FOR ARMAY OPERATIONS
colsul :nx; offcolsucols-nx; varindxul :nvar;
phirowsul:nxc; x2colsophirovstnxc;
phicolswl :ABvide; v2cols-phicols+ABvide;
offpcolasphicols-nx; offprovsophirows-nx;
% VERIFY t2go IN RANGE
if length(t2go)'wnseq, errusg(OExtra/minsing phase times.'); end;
if (any(t2go<O)), errmsg(INegative time to go in psi plus.'); end;

% ---------------- Set Pointers for Initial Discrete Events --------------
% t2go(i) viii be the time from BTP start to the first discrete
% event for each sequence. 'sptr(ispindx(i))' defines the event.
done-l; spindxuones(t2go),seqlen; lastatepuzeros(t2go);
while done)O; % completion flag

for iul:nseq,laststep(i)uuptr(i,epindx(i));end; % indox to last event
laststop-laststep.*(laststep>o); % mask discrete events

* backstepu(latstep<t2go); % boolean
donew2um(backstep); % 0 if done
t2gont2go-backstep.slastatep; % adjust t2go,
t2go-t2go.*(t2go>O); % eliminate any negative times
spindx-spindx-backstep; % adjust index
spindx-sspindz+seqlene(spindzc1); % fix possible vrap-around

"* end; % while done>0
spindxespindz*l; % set to current event
spindx-upindx-(spindv>eeqlen)eseqlen; % fix wrap-around

% ----------------------- Compute Psi. IX, VW, YY --------.------
% Psi - psi, the state transition matrix for the specified t2oo.

K XXw E ' at BTP end from process noise during BTP
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% WW matrix s.t. xO'*WW*xO is the cost for xO error at BTP start
% YY = cost from process noise during BPT
% All used as accumulators for intermediate results during recursions.

% INITIALIZE FOR FIRST EVENT
done-i; elaptimenO; % time into BTP
zerotol=BTP*eps;
Eti,il)min(t2go); % time to first event
isp--sptr(ii,spindx(il)); % identify first stm
XX-zeros(nx); WW-zeros(nx); YY-O; Psiueye(nx); % initialize outputs
% QUICKIE INITIAL DISCRETE EVENT IF PRACTICAL
if isp>O, % first event discrete

blksel-isp*nx+offcols;
Psi-DS(:,blksel);
spindx(ii)-spindx(i1)+1;

end; % if isp>O

% 2MAIN STATE TRANSITION MATRIX (stm) CALCULATION LOOP
while done>O, % main Psi loop

if (elaptime+tl+zarotol)> BTP, t1wBTP-elaptime;donewO;end; %last step
spindx=spindx-(spindx>seqlen),seqlen; % fix any wrap-around
if tl<O, % tluO W>next event nov

stasort(t2go); % get next event time too
t2mnt(2); % time to second event
if (ilaofastseq)&(t2>ctrainlen)&(spindx(il)uml)a...

((trainleneelaptime)<BTP). % next event is a train
% TRAIN EVENT

rowselacolm; aselmi; dt-trainlen; % use short train indices
if (t2>m(dt~speriod))k((dt+elaptime*speriod)BTP), % k cycles

rowselarowsel~nx; ssel*2; dtwdt~speriod;: us. long train indices
end;

D4 stautt(rousel,:);
YnYYWsu•(sum(XX.#qq(rovss10:) )÷~e)

qt4Vp*Psi'eqq(rovsel,:);
lX-ntm*XX;
W-WW+qtempePsi;
Psiuitm*Pei;
XX-lX*stm'*rr(rovsa.l:);
t2goat2go-dt;
elaptimsenlaptim..dt;
t2go(il)uti;

else. % next event NOT A TRAIN EVENT
ispu-sptr(il spindx(i1)); % event identifier

if isp)O. % iep points to DS block
DISCRETE EVENT

blkseluispentooffcols:
rovsolefind(any(DS(:,blksel)'-eye(nx)));
itf length(rovsel)<O, rouselul; end; % guard for rowael-eye
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stm-DS(rovsel,blksel);
XX(rowsel,:)=stm*XX;
Psi (rovsel,:) ustm*Psi;
XX(:,rovsel)mXX*stm';
XX(rovsel,rowsel)=XX(rovsel,rovsel)+xO(rowselrovsel);

else, % isp must be < 0 % i.e. continuous segment
t2go(iiW)t2go(il)-isp; % increase that t2go element

end; %if isp>O ... else ...
end; % if (il-afastseq ... else
spindx(il)-spindx(i1)÷i; % increment sequence index

else, % if (tiWO 0) i.e. ti>O => time passes, continuous segment

% CONTINUOUS TIME TRANSINIONS
ABtlAB*tl;
AtiABtI. (phirovs,phirovs);
tempvq=[-ABtl',vO(phicolsphicols)*tl;zeros(ABvide), ABtI];
tempxr-[-Ati,xO(phirovs,phirova)*tl;zeros(nxc), At1i];

* tempvqaexpm(tempwq);
tempxr-expm(tempxr);
phix-tempvq(v2colsw2cols);
phinphix(phirovs,:);
QtlauO*tl;
Qtl(phicols,phicols)wphix'*tempwq(phicolsv2cols);
qtemp"Pui'*Qtl;
YYuYY*sum(sum(UX,*Qtl));
Rtl-phi(:,phirovs)*tempxr(phirown,x2cols);
XX(phirovw,:)uphi*XX(phicols,:);
WW+qtomp*Pai;
Psi(phirovs,u )mphi*Pui(phicols,:);
XX(:,phirovs)uXX(:,phicols)ephi';
XX(phirows,phirows)uXX(phirous,phirovs).lRtl;
*laptimefelaptims*ti;
t2gowt2go-tl;

end; % it ti <*O ... else ...
(tI.Wltmnin(t2go); % next event a its sequence

end; % while *lapt1m+tl(BTP % no more discretes in BTP

% end function pi2 pa12 eeeeoeee .e .**ee e ****eeeeeeeeee*ee

E.3.10 Linear Search: linsrch2.m
function optstpu...
linsrch2(dir,istepicost,btim•,OzO.AB,,DS.itheta.eeqptr.varptrconst.);

Slinsrch finds the step (in the specified direction) to minimize cost.
% icost w Cost with aiphanO, and ithetaoptstpodir an>theta for min coat

4

S
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nx-consts (1);
GoodEnuf=.10; % 10 pct convergence tolerance
tol=ie-8*icost+eps*nx*nx*nx; % minimum cost improvement
zerostepole-lO; % threshold for effectively zero step
count=0; % iteration counter
maxcount=30; % Loop quits after this many iterations
ga2=2/(1+sqrt(5)); % golden section ratio (.62 approx)
gamlIl-gam2; % golden section ratio (.38 approx)
scopestepus; % factor to shrink/stretch search region
istep-real(istep); % make sure it's real
optstpuistep; % load some initial value

fprintf(' linsrch2:');

% Part 1: find region containing minimum (assuming cost unimodal).

alphamzeros(4,1); % vector of step sizes
cost-zeros(4,1); % vector of corresponding costs
cost(t)uicoat;
alpha(2)=istep;
tthetawitheta+alpha(2)*dir'; % update temporary theta
[ABDS]mupdate(AB,DSttheta,varptr,co~nats); X update AB & kD
cost(2)=acst2(btimo.vO, zO.ABDS,seqpotr,consta);
alpha (3)walpha (2);
cost(3)-cost(2);
,fprintf(' linsrch2: initial end point * Zg'alpha(2));
Wfprintf(', coats- 3.5g \n•.co•t(2));
fprintf('E');

if cost(2)Ccost(l), % cost still decremain
case-t; factorscopestep; ctrpt-2; refendw3; symbu-'';

else. % if cost(4)ccost(1) % istep is past minimum
cases2; factornt/scopostep; ctrpti3; reeandal; *ym•b 0'Q;

end;

*hile cont(ctrpt))-ucost(r*tend); % step until center is lower
coun-tcounte+;
it count~maxcount, optstpa-eps; break; end; % failure
alpha(2)-alpha(3);
cost(2)wcost(3);
alpha(3)-alpha(2) factor; • now alpha(3)
tthetaaithetatalpha(3)adir;
[AB.DS]-update(AB,DS.ttheta,varptrconate);
cost(3)u-scet2(btias. .xzO,.ABDS,seqptrconata);
fprintf(symb);
%fprintf(' scoping: alpha Xg',alpha(3));
%fpriutf(t, costs %3.5g \n',coat(3));

end; % Vhile cost(crpt)u-cost(refend)
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if optstp<=eps; return; end; % error return #1
best3=1:3; % three best points
temp4=ones(4,1)*cost(ctrpt); % best cost so far

% Part 2: guarded parabolic/golden section search for minimum

converr= i+max (cost);
while converr>=(GoodEnuf*(icost-temp4(1)).tol), % converge to 10 pct

count=count+41;
if count>maxcount, optstpu-eps; break; end; % failure
x=alpha(best3); y-cost(best3);
[xxindx]-sort(x); yny(xindx); % put alpha-ascending order
xspan-z(3)-x(1); Xc-(x(2)-x(1))/xspan;
X-[1, 1; xc*xc, xc];
Y¥[(y(3)-y(1)) ; (y(2)-y(1))];
C=X\Y; % approx: yffC(1)*x'2+C(2)*x~y(1)
xmin--C(2)/(2*C(1)); X x estimate fnr min cost

, ymin(C(I)*xmin+C(2))*.min+y(1); % estimate for min cost
if (2*zx(2))>(x(1)+z(3)), xgsgami; else, xgugaz2; end;
if abs(min-%c)>abs(xg-xc).

nevalpba-z(1)+xgxespan; caseul; % nov alpha it golden section
else.

nevaiphamz(1)0+minaxspan; casen" % now alpha if parabolic fit
end:
alpha I"x; nevalpha];
tthatawitheta~dironevalpha;
[AB,DS]Jupdate(ASDSttheta,varptr,consts);
nevcostuacst2(btiue,vO zO,AB.,DS.sOtrcons"ta);
costu ty;nOuco•t];
Cttp4 ,bout4I-sort(cost);
bast3abest4f(1:3);
coUVerrV-tOm•4 (4)-tasp4(l) ;

if cass--2, ce-aba (yhin-nAvcost); convorr-ain(converrce);
Ufprintf(I interp: steps 1);

tprintf('P');
else..

s fprintf(' golden: Step* ');
fpriatf('G');

end;
%fprintf('18.6f, coat- %12.S.. erz- %12.. \n',alpha(4) cost(4),converr);

1a end; % vhile convergence error > 5 percent
Soptetp~real(&lph&(test4(1))).

Zfprlntf(I Final costs %3.8g. final stepm %3.6g \n'.tew4(I).optstp);
fprintf(' Costs %7 .5g, step. IT.SgA\n'U. pl4(1).optstp);

return;
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% end of functi.n linBrch $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

i! '
A)ll-
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